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Abstract
Katarni is a non-basmati traditional aromatic rice cultivar being grown in the Bhagalpur, Banka, and Munger 
districts of Bihar. However, it is weak-strawed, tall, prone to lodging, and late maturing. Attempt was made 
to develop a semi-dwarf and early maturing lines of Katarni by crossing with three semi-dwarf high-yielding 
cultivars and was advanced to F5 generation. In this study, 54 derived lines of Katarni were studied on the 
basis of 14 morphological traits. Five principal components (PCs) were observed which contributed 70% 
of cumulative variability and exhibited Eigenvalues> 1. The first PC (23.31%) and the second PC (35.59%) 
showed a cumulative variation of 63.90%. On the basis of genotype by trait biplot analysis, flag leaf length, 
plant height, and fragrance were found to be strongly positive. Genotypes biplot study revealed diverse 
genotypes like KIR-46 KIR-48, KRS-39, KRS-43, KRS-15, KRS-19, KRS-8, KRS-25, and KMTU-52 which 
can be further exploited for varietal development.
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Introduction
Rice (Oryza sativa L.) is a staple food for more than 2.7 
billion people (Tannidi et al., 2016) around the world, 
and about 32- 59% of the dietary energy and 25-44% 
of the dietary protein is obtained from rice in more 
than 39 countries (Prabhu et al., 2017). According to 
Nagaraju et al., (2002), the aromatic Basmati lies in a 
separate group between indica and japonica in which 
the traditional Basmati and evolved Basmati varieties 
represent a major component of the Basmati gene pool 
of the Indian subcontinent. Katarni is a non-basmati 
traditional aromatic rice cultivar of the Bhagalpur 
district of Bihar. This rice is one of the famous fine-
grained aromatic rices of India which is renowned for 
its unique aroma, special grain, and cooking qualities. 
Its flowering occurs between the end of October to 
the beginning of November and matures in the month 
of December. Plant height ranges from 140 to 160 cm 
(Smriti et al., 2016). In view of its uniqueness, Katarni 
rice has been granted geographical indication in April 

2018. However, the available Katarni is a poor yielder 
(25-30 t/ha), weak strawed, traditionally tall type, 
easily prone to lodging and late maturing (Kumar et 
al., 2018). Principal component analysis (PCA) is 
generally used to estimate the relative contribution of 
various traits for total variability and a small number 
of factors that account for maximum variability can be 
identified easily. It also shows the pattern of similarity 
of the traits and relation among the traits. Further, 
PCA identifies the minimum number of components, 
which can explain the maximum variability out 
of the total variability (Anderson 1972), and also 
ranks genotypes on the basis of PC scores. Several 
researchers have characterized rice germplasm 
including the landraces, varieties, and advanced 
materials of diverse nature for morphological and 
physicochemical quality parameters (Bollinedi et al. 
2020; Madhubabu et al. 2020), and reported a wide 
range of variability. Considering the importance of 
PCA, the present experiment was laid out to identify 
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diversified genotypes with short stature and early 
maturity with high-yielding ability in the segregating 
population generated by crossing Katarni with R. 
Sweta, IR-64, and MTU-7029. Among the derived 
lines, principal component analysis was carried out 
to identify diversified lines which can be utilised for 
future breeding programmes. 

Materials and methods
The experimental material comprised 54 Katarni-
derived families, four parental checks i.e. Katarni, R. 
Sweta, IR-64, MTU-7029, and two aromatic checks 
Sabour Surbhit and Rajendra Suwasini. The derived 
families of Katarni were in F5 generation and were 
grown in alpha lattice design with two replications at 
Rice Section, Bihar Agricultural university, Sabour, 
Bhagalpur during Kharif 2018. For convenience, 
the genotypes of Katarni x Rajendra Sweta, Katarni 
x IR64, and Katarni x MTU7029 were denoted as 
KRS, KIR, and KMTU, respectively. The crop was 
raised following recommended package of practices. 
Observations were recorded on five randomly tagged 
plants of each genotype per replication. Data were 
recorded on fourteen quantitative and quality traits. 

Principal Component analysis is a very important 
tool to minimize the large data set into a new set 
of uncorrelated variables (known as principal 
components) by a linear transformation of original 
variables. In the present study, genotypic means were 
used to determine genetic variability for the traits in 
PCA. The data analysis was conducted using SAS 
(Statistical Analysis System) version 9.2. For PCA, 
eigenvalues were calculated first which define the 
amount of total variation that was displayed on the PC 
axis. Then, loading values were standardized in such 
a way that the sum of squares of loadings within a 
PC was equal to one. The loading values depicted the 
contribution of each trait in the respective principal 
component.   

Result and Discussion
The analysis of variance studied revealed the presence 
of significant variability for the traits which indicated 
diversity among the genotypes. Principal component 
analysis was performed to trace out major components 

and their contributing traits as well as genotypes in 
respective components. The PCA revealed up to seven 
principal components (PC1 to PC7). Among seven 
PCs, five components contributed 70% of cumulative 
variability and exhibited Eigenvalues > 1, i.e. PC1 
(3.26), PC2 (2.28), PC3 (1.77), PC4 (1.25), PC5 (1.24), 
PC6 (0.94) and PC7 (0.73). The first PC (23.31%) and 
second PC (35.59%) showed for cumulative variation 
of 63.90%. Principal components, Eigenvalues, factor 
loading values, the percentage contribution of every 
variable to overall variance, and major contributing 
characteristics for each major component are described 
in Tables 1 and 2. The important characters and major 
contributors to variability in PC1 were kernel length, 
length and breadth ratio, thousand-grain weight, and 
panicle length. Whereas in PC2, important characters 
were flag leaf length, plant height and panicle length, 
and kernel breadth. Gelatinization temperature and 
number of tillers per plant in PC3 (Table 3); the 
number of tillers per plant and amylose content in 
PC4; fragrance, days to 50% flowering, and plant 
height in PC5 were major contributors to variability. 
Traits with high variability are essential during crop 
improvement program (Nachimuthu et al., 2014). 
Therefore, the selection of kernel length, length and 
breadth ratio, plant height, number of tillers per plant, 
and panicle length can be used in the choice of diverse 
genotypes from the specific principal component. The 
outcomes of the current study were consistent with 
the findings of Sao et al., (2019), Ojha et al., (2017), 
and Gaur et al., (2017). The factor loading value was 
found to be maximum for kernel length (0.88) in PC1, 
flag leaf length (0.75) in PC2, kernel breadth (0.71) in 
PC3, amylose content (0.79) in PC4, fragrance (0.65) 
in PC5, grain yield per plant in PC6 and PC7.

Maximum variability in PC1 was contributed by 
genotype KIR-46 (9.49%) followed by KIR-48 
(7.21%) and KRS-39 (6.16%) (Table 3), whereas 
in PC2, maximum variability was contributed by 
KRS-43 (12.42%) followed by KRS-15 (8.58%) and 
KRS-19 (5.30%). In PC3, KRS-25 (11.99%) was 
followed by KRS-8 (11.97%) and KRS-4 (9.49%), 
in PCA4 KMTU-53 (11.94%) was followed by KRS-
7 (11.38%) and KRS-39 (6.04%), were the major 
variability contributors. The highest contribution 
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Table 1.  Eigen value, percentage of variance and eigenvector of Katarni derived lines

PCA
Components 

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Eigenvalue 3.26 2.28 1.77 1.25 1.24 0.94 0.73
Variability (%) 23.31 16.28 12.67 8.95 8.85 6.72 5.24
Cumulative % 23.31 39.59 52.26 61.21 70.06 76.78 82.02

Component matrix Factor Loading Value
PH -0.03 0.67 0.05 0.20 0.31 0.34 -0.15

DOF -0.59 -0.06 0.07 0.19 0.46 0.02 -0.31
FLL -0.03 0.75 0.00 0.08 -0.36 -0.11 0.25
PL 0.46 0.65 0.29 0.12 0.01 -0.14 0.00

NOT -0.11 -0.52 0.35 0.57 -0.09 -0.37 -0.05
GPP -0.76 0.29 -0.18 -0.10 -0.05 0.14 0.15

GW_100 0.71 0.05 0.10 -0.22 0.27 0.39 -0.08
GY -0.05 -0.52 0.30 0.15 -0.01 0.49 0.55

ASV 0.17 0.15 0.64 -0.24 -0.52 -0.02 -0.10
AMY 0.32 0.25 0.11 0.79 0.02 0.15 0.05
FRAG 0.00 0.22 0.27 -0.19 0.65 -0.45 0.43

KL 0.88 -0.17 -0.28 0.02 0.06 -0.09 0.02
KB 0.41 -0.19 0.71 -0.17 0.15 0.03 -0.13
L/B 0.73 -0.10 -0.59 0.08 -0.01 -0.11 0.06

Table 2. Contribution of each trait in different principal components

PCA
Traits PC1 PC2 PC3 PC4 PC5 PC6 PC7

PH 0.02 19.98 0.16 3.11 7.87 12.44 2.87
DOF 10.67 0.17 0.31 2.91 17.42 0.03 13.23
FLL 0.02 24.59 0.00 0.53 10.50 1.39 8.67
PL 6.46 18.61 4.79 1.23 0.00 2.17 0.00

NOT 0.37 11.68 6.80 25.52 0.69 14.23 0.38
GPP 17.59 3.62 1.79 0.76 0.23 2.06 2.95

GW_100 15.42 0.12 0.62 4.01 5.74 15.93 0.90
GY 0.08 11.73 5.06 1.69 0.01 25.56 41.26

ASV 0.84 1.03 23.03 4.52 21.49 0.05 1.49
AMY 3.11 2.85 0.66 49.83 0.03 2.28 0.39
FRAG 0.00 2.20 4.25 2.96 33.88 21.69 24.84

KL 23.99 1.32 4.35 0.03 0.34 0.77 0.05
KB 5.15 1.67 28.46 2.40 1.78 0.08 2.42
L/B 16.29 0.44 19.71 0.51 0.02 1.31 0.54
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Table 3. Contribution of each genotype in different principal components

Sl. No. Genotypes PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7
1. KIR-44 0.74 0.31 0.06 0.09 2.80 4.89 0.80
2. KIR-45 4.07 2.36 0.75 0.04 3.37 0.30 2.83
3. KIR-46 9.49 1.25 0.96 2.80 0.12 6.59 4.87
4. KIR-47 3.02 0.25 2.75 0.00 0.34 0.08 11.60
5. KIR-48 7.21 0.00 0.48 0.95 0.00 0.02 2.98
6. KIR-49 5.38 0.10 0.56 1.24 6.31 5.79 2.62
7. KMTU-50 1.13 0.70 0.11 0.57 0.14 0.68 0.53
8. KMTU-51 0.99 0.94 0.59 0.20 0.22 0.26 0.42
9. KMTU-52 2.70 0.07 0.20 1.27 1.98 0.25 10.56

10. KMTU-53 1.19 1.06 2.00 11.94 0.17 0.11 0.11
11. KMTU-54 0.41 1.56 0.49 5.62 12.94 0.69 3.35
12. KRS-1 0.02 0.44 1.34 0.76 0.18 0.90 0.05
13. KRS-10 2.36 1.61 0.80 4.84 2.53 0.02 0.83
14. KRS-11 0.77 0.23 3.15 0.13 1.26 7.23 0.00
15. KRS-12 0.22 0.00 3.48 0.16 0.79 0.18 1.18
16. KRS-13 0.66 1.05 2.59 4.26 0.05 0.39 1.38
17. KRS-14 0.89 1.43 2.00 0.00 0.79 0.00 0.30
18. KRS-15 0.30 8.58 0.03 2.36 0.29 0.12 0.03
19. KRS-16 0.06 4.20 0.08 0.33 0.80 0.51 3.52
20. KRS-17 0.59 3.66 0.03 0.02 0.53 0.03 0.03
21. KRS-18 0.03 2.14 1.12 0.90 3.31 3.85 0.03
22. KRS-19 0.24 5.30 0.32 0.24 0.61 0.01 1.10
23. KRS-2 0.00 0.80 0.20 2.26 1.05 1.89 0.92
24. KRS-20 0.11 1.20 3.06 0.31 0.04 0.54 0.28
25. KRS-21 0.67 1.08 0.08 0.37 1.29 1.85 1.52
26. KRS-22 0.04 4.40 0.09 0.58 0.15 0.21 0.03
27. KRS-23 0.21 0.15 0.20 0.02 0.31 0.99 0.24
28. KRS-24 0.06 0.24 0.52 1.83 0.94 9.09 5.84
29. KRS-25 1.34 1.78 11.99 0.00 2.38 0.25 8.79
30. KRS-26 0.14 0.51 0.19 0.11 0.12 0.50 0.97
31. KRS-27 0.54 0.30 2.65 0.08 1.58 2.25 0.45
32. KRS-28 0.01 0.12 1.86 2.10 1.42 4.13 0.09
33. KRS-29 2.73 0.12 0.54 0.73 0.52 0.04 1.85
34. KRS-3 2.45 0.35 0.95 0.12 3.39 5.54 0.43
35. KRS-30 5.46 0.52 0.00 0.03 0.22 1.17 1.83
36. KRS-31 0.97 0.74 8.82 3.89 0.16 6.78 1.18
37. KRS-32 4.26 0.52 2.27 3.83 0.00 0.76 0.70
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Sl. No. Genotypes PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7
38. KRS-33 1.03 0.00 4.23 2.31 0.00 0.03 0.22
39. KRS-34 1.80 1.12 1.46 0.12 0.24 0.61 0.71
40. KRS-35 2.01 0.21 0.05 0.25 0.00 0.13 0.67
41. KRS-36 0.16 0.06 0.02 0.04 1.21 0.03 0.23
42. KRS-37 0.90 0.00 4.23 0.83 0.22 2.25 0.66
43. KRS-38 0.68 0.45 1.30 3.65 3.28 0.33 0.09
44. KRS-39 6.16 0.19 0.01 6.04 1.34 1.32 0.05
45. KRS-4 0.08 0.42 9.49 3.39 0.42 0.03 3.93
46. KRS-40 3.16 1.70 0.00 0.00 2.90 0.01 1.69
47. KRS-41 0.02 1.77 0.50 0.05 0.05 2.70 0.71
48. KRS-42 0.91 0.27 0.01 0.73 6.90 1.12 1.86
49. KRS-43 0.46 12.42 0.04 1.52 9.47 7.78 2.48
50. KRS-5 0.06 3.49 1.54 0.18 0.40 0.63 0.01
51. KRS-6 0.01 4.26 0.02 0.11 0.82 4.45 0.14
52. KRS-7 0.90 0.45 0.00 11.38 1.24 0.07 0.93
53. KRS-8 0.06 0.27 11.97 2.20 0.83 2.48 0.06
54. KRS-9 4.06 0.40 1.12 1.46 0.83 0.07 2.80
55. MTU7029 0.44 1.32 0.50 0.00 0.09 2.94 2.38
56. IR-64 4.42 2.18 0.49 0.96 1.22 1.23 0.12
57. Katarni 2.01 14.75 1.59 8.52 9.81 1.00 1.35
58. R. Sweta 0.22 1.35 1.98 0.63 1.47 0.80 1.17
59. R. Suwasini 4.02 2.66 1.49 0.35 4.12 0.12 2.63
60. S. Surbhit 4.97 0.19 0.64 0.29 0.00 0.98 0.81

PH: Plant height, DOF: Days to 50% flowering, FLL: Flag leaf length, PL: Panicle length, NOT: Number of tillers/hill, GPP: Number 
of grains/panicle, GW-100: 1000-grain weight, ASV: Alkali spreading value, AMY: Amylose content, FRAG: Fragrance, KL: Kernel 
length, KB: Kernel breadth, LB: L/B ratio and GY: Grain yield/plant

for variability in PC5 was contributed by genotypes 
KMTU-54 (12.94%) followed by KRS-43 (9.47%) 
and KIR-49 (6.31%). Among the checks, Katarni 
(14.75%) was the major variability contributor in 
PCA2. The derived information of PCA on F5 lines of 
Katarni would be very useful to select potential and 
diverse breeding lines for future rice improvement 
programmes. 

Scree plot explained the percentage of variation by 
plotting a graph between eigenvalues and cumulative 
variability (%) on the Y axis and the mean value of 
14 characters under study on the X axis (Figure 1). 
The scree plot explained the percentage of variation 

by each PC and its eigenvalues.  As depicted in the 
graph majority of variations were contributed by the 
first three PCs. The distribution of the scores for the 
14 different characters in the scree plot indicated the 
presence of large diversity. 

Comparison of genotypes on the basis of measured 
multiple variables are possible by Genotype by Trait 
(GT) biplot which identifies those genotypes that are 
particularly superior in certain traits. The GT biplot 
can be effectively used as an independent selection 
criterion of genotypes on the basis of yield (Yan 
and Rajcan, 2002). The distance to the biplot origin, 
known as the vector length of a trait is indicative 
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Figure 1: Scree plot of different components  
with Eigen values

of the trait representation in the biplot. A relatively 
short vector indicates that the variation of the trait 
across genotypes is either small or not well presented 
in the biplot due to its weak or lack of correlation 
with other traits (Yan and Fregeau-Reid, 2018). PC1 
and PC2 variables in biplot analysis showed both 
positive and negative associations among the traits.  
Flag leaf length, plant height, and fragrance were 
strongly positively correlated as the axes recorded 
an angle less than 900 (Figure 2). Similarly, panicle 
length with gelatinization temperature and amylose 
content; length/ breadth ratio with kernel length and 
kernel breadth, and number of tillers per plant with 
grain yield per plant were positively correlated as 
these traits showed axes angle less than 90°. A few 
traits like the number of grains per panicle with kernel 
breadth and thousand seed weight with days to 50% 
flowering were negatively associated as these traits are 
placed at approximately 180° angle on PC1 and PC2 
axes. Similarly, the genotypes biplot study (Figure 3) 
revealed that entries KIR-46 KIR-48, KRS-39, KRS-
43, KRS-15, KRS-19, KRS-8, KRS-25, KMTU-52, 
and Katarni are distantly placed from the origin of 
axes indicating their diversity with respect to other 

genotypes under study.  Therefore, the selection of 
kernel length, length and breadth ratio, plant height, 
number of tillers per plant, and panicle length can 
be used in the selection of diverse genotypes and a 

Figure 2: Biplot of 14 different morphological characters 

Figure 3: Biplot of 60 genotypes including checks
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hybridization breeding program can be initiated by 
using the diverse genotypes obtained in the present 
study. 
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