

ORIGINAL RESEARCH ARTICLE

Productivity of direct seeded rice in response to various weed management practices and their residual effect on green gram

B. Jyothi Basu*, Prasad PVN, Murthy VRK, Y.Ashoka Rani and Prasad PRK

Department of Agronomy, Agricultural College, Acharya N.G. Ranga Agricultural University, Bapatla, Andhra Pradesh- 522101 *Corresponding author (Email - jyoba226@gmail.com)

Received: 10th April 2020; Accepted: 27th May 2020

Abstract

Field experiment was conducted during 2015-16 and 2016-17 at Agricultural College farm, Bapatla, Guntur, Andhra Pradesh to study the efficacy of sequential application of herbicides in direct sown rice-green gram cropping system. The experiment was laid out in randomized block design with three replications. Though weed free treatment (T_{13}) resulted in higher gross returns during both the years of study (Rs. 114376 and Rs. 124482 ha⁻¹ during 2015-16 and 2016-17, respectively) the net returns and return per rupee investment were markedly higher under pre-emergence application of bensulfuron methyl @ 60 g a.i. ha⁻¹ + pretilachlor with safener at 500 g a.i. ha⁻¹ followed by post-emergence application of azimsulfuron @ 20 g a.i. ha⁻¹ at 25 DAS andpost-emergence application of metsulfuron methyl and chlorimuron ethyl @ 4 g a.i. ha⁻¹ applied at 45 DAS (T_9) during both the years.

Key words: Direct sown rice, post emergence, herbicides, pre emergence, weed management

Introduction

The rice-pulse cropping system is one of the most important agricultural production systems in the Krishna zone of Andhra Pradesh owing to its large acreage and production (Singh *et al.*, 2017) of Ricepulse cropping sequence is practically feasible, economic, eco-friendly, water saving technology for sustaining soil fertility and rice productivity. The productivity of rice-green gram system is decreasing due to emergence of multi-nutrient deficiencies, building up of soil pathogens and weed flora.

Weeds are major limiting factor in crop production (Buhler, 1992), causing maximum losses amongst crop pests. They reduce the crop yield and deteriorate the quality of produce and hence reduce the market value of the turn out (Arif *et al.*, 2006). Weeds compete for available moisture and nutrients, space and light with crop plants, which result in yield

reduction (Khan et al., 2004). If left uncontrolled, the weeds in many fields are capable of reducing yields by more than 80 per cent (Karlen et al., 2002). Appropriate weed management is considered one of the most important prerequisites in direct sown rice systems to ensure high crop yield. Chemical weed management is the most prominent method to manage weeds in direct sown rice because of its selectivity, cost effectiveness and more labour- and time-saving than other weed management practices (Mazid et al., 2003). The use of herbicides in rice for controlling weeds has increased significantly over the last several years (FAO, 2002). Since direct sown rice has complex and diverse weed species, no single herbicide will control all weed species. Therefore, a combination of herbicides applied in sequence is needed for effective control of sedges, broadleaves, and grasses. (Maity and Mukherjee, 2008). Several herbicides, with pre emergence activity, such as

oxadiazon and oxadiargyl, have some limitations *viz.*, limited window of application timing and an adequate soil moisture requirement at the time of their application (Singh *et al.*, 2006). If optimum conditions are not available, post emergence herbicides may be a better option to manage weeds in direct sown rice systems (Mahajan and Chauhan, 2013). In view of this, the present experiment was conducted to study the system productivity and economics of rice-green gram cropping system as influenced by sequential application herbicides in direct sown rice

Materials and Methods

A field experiment was conducted during *Kharif* 2015 and 2016 at the Agricultural College Farm, Bapatla, Guntur, Andhra Pradesh. The soil of the experimental site was sandy loam in texture, slightly alkaline in reaction (pH 8.0 and 7.5), low in organic carbon (0.45 and 0.48%), low in available nitrogen (212 and 230 kg ha⁻¹), medium in available phosphorus (17 and 18 kg ha⁻¹) and medium in available potassium (261 and 285 kg ha⁻¹). There were fourteen treatments, as given here under.

Treatments	Dose (g ha-1)	Time (DAS)
T _{1.} Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron	25 fb 20	Pre fb Post
T ₂ .Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium	25 fb 25	Pre <i>fb</i> Post
T_{3} Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron	60 + 500 <i>fb</i> 20	Pre <i>fb</i> Post
T_4 Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium	60 + 500 <i>fb</i> 25	Pre fb Post
T _{5.} Oxadiargyl <i>fb</i> Azimsulfuron	75 fb 20	Pre <i>fb</i> Post
T _{6.} Oxadiargyl <i>fb</i> Bispyribac-sodium	75 fb 25	Pre <i>fb</i> Post
T _{7.} Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 fb 20 fb 4	Pre fb Post fb Post
T _{8.} Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 fb 25 fb 4	Pre fb Post fb Post
T_{9} Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 <i>fb</i> 20 <i>fb</i> 4	Pre fb Post fb Post
T _{10.} Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 <i>fb</i> 25 <i>fb</i> 4	Pre <i>fb</i> Post <i>fb</i> Post
T _{11.} Oxadiargyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 20 fb 4	Pre fb Post fb Post
T _{12.} Oxadiargyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 25 fb 4	Pre fb Post fb Post
T _{13.} Weed free	-	-
T _{14.} Weedy check	-	-

Note: Weed free condition maintained by employing manual weeding at regular intervals; *fb* – followed by

Pre and post emergence herbicides were sprayed using a knapsack sprayer fitted with a flat-fan nozzle at a spray volume of 500 l ha⁻¹. A seed rate of 50 kg ha⁻¹ was adopted. Seeds were weighed separately for each plot and sown in solid rows in the furrows opened by line markers at 25 cm interval in both the years. Recommended dose of fertilizer (120:60:60 kg NPK ha-1) was applied uniformly, entire dose of phosphorous and potassium was applied as basal dose before last ploughing and nitrogen in three equal splits at basal, active tillering and panicle initiation stages. Irrigation comprised of alternate drying and wetting followed by intermittent irrigation at seven days' interval up to 15 days before harvest. Other agronomic and plant protection measures were adopted as recommended during the crop growth. Grain yield was recorded from net plot and converted to grain yield per hectare.

Gross Returns (₹ ha-1)

The gross returns were calculated by considering the grain and straw yield asc well as prices of rice and green gram, prevailing in the local market.

Net Returns (₹ ha⁻¹)

The net returns ha⁻¹ was calculated by deducting the cost of cultivation from the gross returns ha⁻¹.

Net return $(\overline{\mathfrak{T}}) = \text{Gross income ha}^{-1} (\overline{\mathfrak{T}})$ - Cost of cultivation ha⁻¹ $(\overline{\mathfrak{T}})$

Returns per Rupee Investment (B:C Ratio)

The returns we get from each one rupee invested in the cultivation of rice and greengram was calculated as follows:

Net Returns/ Cost of Cultivation

Rice Equivalent Yiled of green gram:

Rice equivalent yield of green gram was calculated by multiplying the economic yield of green gram with the price kg⁻¹ of green gram and divided by price of rice kg⁻¹ in the local market by making use of the following formula as stated by Munda *et al.* (2008).

	Yield of green gram (kg) \times Price of
Rice equivalent yield =	green gram kg ⁻¹
	Price of rice kg ⁻¹

Herbicide	Cost (Rs. ha ⁻¹)	Fertilizers	Cost (Rs. ha ⁻¹)	Output p	rice (2015-16)
Pyrazosulfuron ethyl:	560	Nitrogen through Urea:	1482	Rice grain (Rs. 14.5 kg ⁻¹)	Green gram grain (Rs. 48.5. kg ⁻¹)
bensulfuron methyl + pretilachlor:	2425	Potassium through MOP:	773	Rice straw (Rs. 1.0 kg ⁻¹)	Green gram haulm (Rs. 0.5 kg ⁻¹)
Oxadiargyl:	819	Phosphorus through SSP:	3075	Output p	rice (2016-17)
Azimosulfuron:	1691	Total fertilizer cost :	5330	Rice grain (Rs. 15.1 kg ⁻¹)	Green gram grain (Rs. 52.3. kg ⁻¹)
Bispyribac-sodium:	2350	Labour wages :	300 d ⁻¹	Rice straw	Green gram haulm
metasulfuron methyl and chlorimuron ethyl:	3800			(Rs. 1.0 kg ⁻¹)	(Rs. 0.5 kg ⁻¹)

Cost of herbicides, fertilizers, rice and green gram seed and labour wages during 2015-16 and 2016-17

Results and Discussion

Total dry matter production of cropping system as a whole as influenced by weed management practices

Biological production potential of the rice-green gram cropping system as indicated by the total day matter production was significantly influenced by green gram crop in the cropping system as well as different weed management practices in rice (**Table 1**).

For the purpose of evaluating production potential of the cropping system, the total biomass produced was computed by adding the dry matter accrual of individual crop in the respective season. Among the different weed management practices imposed on rice, the treatment weed free (T_{13}) registered the highest dry matter production (13793 and 16847 kg ha⁻¹), which was comparable with the treatments T_9 and T_{10} but was superior to the treatments T_3 , T_{14} , T_1 , T_2 , T_5 , T_6 and T_{14} . Weedy check (T_{14}) resulted in the lowest dry matter accumulation of rice-green gram sequence.

Better performance of rice-green gram system under the influence of treatment T_{13} (weed free) was mainly due to higher dry matter accrual of both rice and green gram crops in the system. In the present study the first crop rice followed by green gram in the sequence resulted in elevating the biomass yield of the system. These findings conform to the report of Reddy *et al.* (2017).

Grain yield of rice (kg ha⁻¹)

The highest grain yield (5284 and 5455 kg ha⁻¹ during 2015-16 and 2016-17, respectively) was recorded under weed free treatment (T_{13}), which was significantly superior to rest of the treatments except treatment T_9 , which was comparable to the treatments T_{10} , T_7 , T_{11} and T_8 . The lowest grain yield (2159 and 2529 kg ha⁻¹) was obtained in untreated i.e. weedy check (T_{14}) plot, significantly lower than any herbicidal treatment. Appropriate weed management in direct sown rice resulted in lower weed density and weed dry matter and higher dry matter accumulation and nutrient uptake by the crop. These results are in

agreement with the findings of Yadav *et. al.* (2009), Singh *et. al.* (2010), Naseeruddin and Subramanyam (2013), Hossain and Mondal (2014), Rammu Lodhi, (2016), and and Ajay Singh *et al.* (2017).

Seed yield of green gram (kg ha-1)

The seed yield of succeeding green gram crop after rice was non-significant among the treatments during both the years of study (**Table 2**). This indicates that there was no marked difference among the treatments and the impact of herbicides applied to rice. The applied herbicides which sufficiently got degraded in the soil had no residual effect on the dry matter, number of pods as well as seed and haulm yields of green gram. This indicated that different weed management practices applied to rice had no adverse or favourable effect on growth and yield of succeeding green gram crop. Similar results were also reported by Kumaran *et al.* (2015) that herbicides applied to rices growth and yields.

System Productivity

Economic yield of system productivity comprising rice-green gram presented as rice grain equivalent yield was not distinctly effected by green gram crop in the cropping system as well as weed management practices to rice during both the years of study (**Table 3**). Various weed management practices to rice in rice-green gram sequence exerted profound influence on the economic yield of the system as a whole. Among the weed management practices weed free (T_{13}) realized the highest economic yield in terms of rice grain equivalent in rice-green gram sequence studied, which was however comparable with treatments T_9 and T_{10} . Weedy check to rice crop has resulted in the lowest economic yield of the system during both the years of study.

For the purpose of judging the economic yield potential of rice-green gram system, the yields of green gram were converted into grain equivalent of rice and to this, the rice yield obtained in *kharif* season in respective treatments was added. Weed free (T_{13})

lanagement	
l by weed ma	
s influenced	
sequence a	
) of rice-green gram sequence a	
a ⁻¹) of rice-g	
yield (kg ha	
and Grain	
luction (kg ha ⁻¹)	d 2016-17
roducti	rif 2015-16 and 2016-17
/ matte	ıari
ble 1. Total dry	ractices during kl
Tal	pr:

∕•₿

Dose Treatments Time (g har) Total dry matter (DAS) Cotal dry matter (DAS) Cotal dry matter (Cotal ry 2015) Cotal ry 2015 (Cotal ry 2016) Cotal ry 2015 (Cotal ry 2016) Cotal ry 2015 (Cotal ry 2016) Cotal ry 2016 (Cotal ry 2016) Cotal ry 2016 Cotal r	practices during knary 2015-16 and 2016-17								
(\mathbf{a},\mathbf{n}) (\mathbf{D},\mathbf{S}) $\mathbf{production}$ \mathbf{Ricc} $\mathbf{Ciccang}$ \mathbf{Cicang} $\mathbf{Ciccang}$ $\mathbf{Ciccang}$		Dose	Time	Total dr	y matter		Grain yiel	d (kg ha ⁻¹)	
Matrix	Treatments	(g ha ⁻¹)	(DAS)	produ	Iction	Ri	ce	Green	gram
ucon ethyl/b Azimsulfuron $25/b^{+}20$ Pre/b Post 11407 12010 3844 5619 548 nenchyl + Pretilachlor with safener $25/b.25$ Pre/b Post 11057 1225 3604 3521 532 futon $25/b.25$ Pre/b Post 11071 13652 4118 4203 5364 5364 futon $357/b.20$ Pre/b Post 11071 13652 3473 5364 5392 548 futon $75/b.20$ $Pre/b Post$ 11070 3302 3243 5392 539 we coltum $75/b.20$ $Pre/b Post, Post$ 11062 11976 3393 3423 539 we or ethyl/b Sispribae-sodium $75/b.20$ $Pre/b Post, Post$ 12960 14609 4599 4661 537 we or ethyl/b Azimsulfuron/b $25/b.20/b.4$ $Pre/b Post, Post$ 12960 14609 4599 4661 539 we or ethyl/b Bispribae-sodium fb $25/b.25/b.4$ $Pre/b Post, Post$ 12960 14609 4599 4661 537 we or ethyl $25/b.25/b.4$ $Pre/b Post, Post$ 12960 14509 4599 4661 537 571 a methyl + Pretilachlor with safener $60 + 500/b.20/b$ $Pre/b Post, Post$ 13764 1583 5174 565 567 a methyl + Pretilachlor with safener $60 + 500/b.20/b$ $Pre/b Post, Post$ 13764 1480 4501 530 517 a methyl + Pretilachlor with safener $60 + 500/b.20/b$ <td< th=""><th></th><th></th><th></th><th>2015-16</th><th>2016-17</th><th>2015</th><th>2016</th><th>2015</th><th>2016</th></td<>				2015-16	2016-17	2015	2016	2015	2016
area of the function of the functin of the function of the function of the function of	T ₁ Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron	25 fb * 20	Pre <i>fb</i> Post	11407	12010	3844	3619	548	632
n methyl + Pretilachlor with saftear $60 + 500$ β 20 Pre β Post 12016 13652 4118 4203 556 556 fnom n methyl + Pretilachlor with saftear $60 + 500$ β 25 Pre β Post 11072 13685 3923 5393 5392 <td>$T_{2.}$ Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium</td> <td>25 <i>fb</i> 25</td> <td>Pre <i>fb</i> Post</td> <td>11057</td> <td>12225</td> <td>3604</td> <td>3521</td> <td>532</td> <td>624</td>	$T_{2.}$ Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium	25 <i>fb</i> 25	Pre <i>fb</i> Post	11057	12225	3604	3521	532	624
n methyl + Pretilachlor with safener $60 + 500/b 25$ Pre β Post 11071 13685 3674 3923 548 θ Azimsulfuron $75/b 20$ Pre β Post 11062 11976 3392 3201 539 θ Azimsulfuron $75/b 25$ Pre β Post 10587 11709 3302 3261 539 θ Bispyribac-sodium $75/b 25/b 4$ Pre β Post β Post 13591 14609 4599 4661 537 θ methyl + Chlorimuron ethyl $25/b 25/b 4$ Pre β Post β Post 13764 15833 5107 5313 571 θ methyl + Chlorimuron ethyl $25/b 25/b 4$ Pre β Post β Post 13764 15833 5107 5313 571 θ methyl + Chlorimuron ethyl $\theta + 500/b 25/b 4$ Pre β Post β Post 13764 15833 5107 5313 571 θ methyl + Chlorimuron ethyl $\theta + 500/b 25/b 4$ Pre β Post β Post 13764 14508 4661 530 θ methyl + Chlorimuron ethyl $\theta + 500/b 25/b 4$ Pre β Post β Post <	T _{3.} Bensulfuron methyl + Pretilachlor with safener $f_{3.}$ Bersulfuron	60 + 500 fb 20	Pre <i>fb</i> Post	12016	13652	4118	4203	556	652
	$T_{4.}$ Bensulfuron methyl + Pretilachlor with safener fb Bispyribac-sodium	60 + 500 fb 25	Pre fb Post	11071	13685	3674	3923	548	548
$(\beta Bispyribac-sodium)$ $75/b25$ $Pec/b Post$ 10587 11709 3302 3261 529 59 n methyl + Chlorimuron ethyl $25/b20/b4$ $Pec/b Post/b Post$ 13591 14863 4714 4687 559 579 n methyl + Chlorimuron ethyl $25/b25/b44$ $Pec/b Post/b Post$ 12960 14609 4599 4661 537 571 n methyl + Chlorimuron ethyl $25/b25/b44$ $Pec/b Post/b Post$ 12960 14609 4599 4661 537 n methyl + Pretilachlor with safener $60+500/b22/b4$ $Pec/b Post/b Post$ 13764 15833 5107 5313 571 n methyl + Pretilachlor with safener $60+500/b22/b4$ $Pec/b Post/b Post$ 13764 15833 5107 5313 571 n methyl + Pretilachlor with safener $60+500/b22/b4$ $Pec/b Post/b Post$ 13764 15833 5107 5313 571 n methyl + Pretilachlor with safener $60+500/b22/b4$ $Pec/b Post/b Post$ 13764 14208 4666 4601 530 n methyl + Pretilachlor with safener $75/b20/b4$ $Pec/b Post/b Post$ 12670 14308 4666 4601 530 n methyl + Pretilachlor with safener $75/b22/b4$ $Pec/b Post/b Post126701430846664601530n methyl + Pretilachlor with safener75/b22/b4Pec/b Post/b Post1267043714437534n methyl + Chlorimuron ethyl75/b22/b4$	T _{5.} Oxadiargyl <i>fb</i> Azimsulfuron	75 <i>fb</i> 20	Pre <i>fb</i> Post	11062	11976	3593	3423	537	625
uron ethyl h Azimsulfuron h $25/b 20/b 4$ $Perb Post h Post$ 13591 14863 4714 4687 559 559 n methyl + Chlorimuron ethyl $25/b 25/b 4$ $Pre / b Post / b Post$ 12960 14609 4599 4661 537 n methyl + Chlorimuron ethyl $25/b 25/b 4$ $Pre / b Post / b Post$ 12960 14609 4599 4661 537 n methyl + Chlorimuron ethyl $60 + 500/b 20/b 4$ $Pre / b Post / b Post$ 13764 15833 5107 5313 571 n methyl + Pretilachlor with safener $60 + 500/b 20/b 4$ $Pre / b Post / b Post$ 13764 15833 5107 5313 571 n methyl + Pretilachlor with safener $60 + 500/b 20/b 4$ $Pre / b Post / b Post$ 13365 15618 4828 5014 565 n methyl + Pretilachlor with safener $75/b 20/b 4$ $Pre / b Post / b Post$ 13365 15618 4828 5014 565 n ethyl $75/b 25/b 4$ $Pre / b Post / b Post$ 13020 14966 4601 530 5455 585 n ethyl $75/b 25/b 4$ $Pre / b Post / b Post$ 12670 1424 675 5455 5856 5802 5802 5456 5856 5802 5802 5856 5856 5867 5862 5856 5856 5856 5856 5856 5856 5856 5856 5856 5856 5856 5856 5856 5856 5856 5856 5856 5856 </td <td>T_{6.} Oxadiargyl <i>fb</i> Bispyribac-sodium</td> <td>75 fb 25</td> <td>Pre <i>fb</i> Post</td> <td>10587</td> <td>11709</td> <td>3302</td> <td>3261</td> <td>529</td> <td>617</td>	T _{6.} Oxadiargyl <i>fb</i> Bispyribac-sodium	75 fb 25	Pre <i>fb</i> Post	10587	11709	3302	3261	529	617
uron ethyl /b Bispyribac-sodium /b $25 /b 25 /b 4$ Pre /b Post /b Post /b Post 12960 14609 4599 4661 537 n methyl + Pretilachlor with safener $60 + 500 /b 20 /b 4$ Pre /b Post /b Post 13764 15833 5107 5313 571 n methyl + Pretilachlor with safener $60 + 500 /b 20 /b 4$ Pre /b Post /b Post 13764 15833 5107 5313 571 n methyl + Pretilachlor with safener $60 + 500 /b 25 /b 4$ Pre /b Post /b Post 13365 15618 4828 5014 565 n methyl + Pretilachlor with safener $75 /b 20 /b 4$ Pre /b Post /b Post 13365 14308 4666 4601 530 n ethyl $75 /b 20 /b 4$ Pre /b Post /b Post 13020 14308 4666 4601 530 n ethyl $75 /b 25 /b 4$ Pre /b Post /b Post 12670 14549 4371 4437 534 n methyl + Chlorimuron ethyl $75 /b 25 /b 4$ Pre /b Post /b Post 12670 14549 2159 5455 585 eck 7971 8802 2159 2529 5252 585 eck $75 /b 25 /b 4$ Pre /b Post /b Post 7671 2802 2529 5252 585 eck 7971 8802 2159 5252 585 eck 7971 8802 2159 298 19 eck <t< td=""><td>$T_{\gamma_{1}}$ Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl</td><td>25<i>fb</i> 20<i>fb</i> 4</td><td>Pre fb Post fb Post</td><td>13591</td><td>14863</td><td>4714</td><td>4687</td><td>559</td><td>652</td></t<>	$T_{\gamma_{1}}$ Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 <i>fb</i> 20 <i>fb</i> 4	Pre fb Post fb Post	13591	14863	4714	4687	559	652
an methyl + Pretilachlor with safener furon \hbar Mesulfuron methyl + n ethyl $(0 + 500 \ \hbar 20 \ \hbar 6)$ $(0 + 500 \ \hbar 20 \ \hbar 6)$ $(1 + 760 \ \hbar 6)$ <th< td=""><td>T_8. Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl</td><td>25 <i>fb</i> 25 <i>fb</i> 4</td><td>Pre fb Post fb Post</td><td>12960</td><td>14609</td><td>4599</td><td>4661</td><td>537</td><td>655</td></th<>	T_8 . Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 <i>fb</i> 25 <i>fb</i> 4	Pre fb Post fb Post	12960	14609	4599	4661	537	655
on methyl + Pretilachlor with safere ac-sodium/b Metsulfuron methyl + $60 + 500 fb 25 fb 4$ $Pre fb Post/b Post$ 13365 15618 4828 5014 565 30 edd 30 edd 4666 4601 530 565 116 Azimsulfuron 16 Azimsulfuron 16 Azimsulfuron 4666 4601 530 565 560 4601 530 565 565 1601 502 530 565 565 565 565 565 565 585 598 <t< td=""><td>T_{9}. Bensulfuron methyl + Pretilachlor with safener fb Azimsulfuron fb Metsulfuron methyl + Chlorimuron ethyl</td><td>60 + 500 <i>fb</i> 20 <i>fb</i> 4</td><td>Pre <i>fb</i> Post <i>fb</i> Post</td><td>13764</td><td>15833</td><td>5107</td><td>5313</td><td>571</td><td>662</td></t<>	T_{9} . Bensulfuron methyl + Pretilachlor with safener fb Azimsulfuron fb Metsulfuron methyl + Chlorimuron ethyl	60 + 500 <i>fb</i> 20 <i>fb</i> 4	Pre <i>fb</i> Post <i>fb</i> Post	13764	15833	5107	5313	571	662
1 fb Azimsulfuron fb Metsulfuron75 fb 20 fb 4Pre fb Post fb Post fb Post fb 914308466646015301 fb Dispyribac-sodium fb 75 fb 25 fb 4Pre fb Post fb Post fb Post fb Post fb Post fb 214549437144375341 fb Dispyribac-sodium fb 75 fb 25 fb 4Pre fb Post	T_{10} Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 <i>fb</i> 25 <i>fb</i> 4	Pre <i>fb</i> Post <i>fb</i> Post	13365	15618	4828	5014	565	656
1 fb Bispyribac-sodium fb $75 fb 25 fb 4$ Pre fb Post fb Post fb Post fb 12670 14549 4371 4437 534 n methyl + Chlorimuron ethyl $$ 14166 16247 5450 535 585 sck $$ $$ 7971 8802 2159 5229 523 sck $$ $$ 565 490 233 298 19 0 $$ $$ 1641 1424 678 865 NS	T _{11.} Oxadiargyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 <i>fb</i> 20 <i>fb</i> 4	Pre fb Post fb Post	13020	14308	4666	4601	530	649
ck - - 14166 16247 5455 585 585 ck - - - 7971 8802 2159 2529 523 ck - - - 565 490 233 298 19 r - - - 1641 1424 678 865 NS	T_{12} Oxadiargyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 <i>f</i> b 25 <i>f</i> b 4	Pre fb Post fb Post	12670	14549	4371	4437	534	642
ck - - 7971 8802 2159 523 533 c - - 565 490 233 298 19 r - - 1641 1424 678 865 NS	$T_{1,3}$. Weed free	I	I	14166	16247	5450	5455	585	662
- - 565 490 233 298 19 - - - 1641 1424 678 865 NS	T ₁₄ . Weedy check	ı	I	7971	8802	2159	2529	523	594
1641 1424 678 865 NS	SEm ±	ı	I	565	490	233	298	19	31
	CD (P = 0.05)	ı	I	1641	1424	678	865	NS	NS

70 ★ Journal of Rice Research 2020, Vol 13, No. 1

*fb-followed by

Table 2. System Productivity (kg ha⁻¹) of rice-green gram sequence as influenced by different weed management practices in ricegreen gram sequence during 2015-16 and 2016-17 kharif and rabi seasons

Treatments	Dose	Time		2015-16			2016-17	
	(g ha ⁻¹)	(DAS)	Rice	Rice grain	System	Rice	Rice grain	System
			grain	equivalent	productivi-	grain	equivalent	produc-
			yield	yield	ty (kg ha ⁻¹)	yield	yield	tivity (kg
			(kg ha ⁻¹)	(kg ha ⁻¹)		(kg ha ⁻¹)	(kg ha ⁻¹)	ha^{-1})
T_{1} Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron	25 fb * 20	Pre fb Post	3844	1821	5664	3619	2188	5806
T_2 Pyrazosulfuron ethyl fb Bispyribac-sodium	25 fb 25	Pre fb Post	3604	1767	5371	3521	2158	5679
T_{3} Bensulfuron methyl + Pretilachlor with	60 + 500 fb	Pre fb Post	4118	1848	5966	4203	2255	6458
safener <i>fb</i> Azimsulfuron	20							
T_4 Bensulfuron methyl + Pretilachlor with	60 + 500 fb	Pre fb Post	3674	1820	5494	3923	1896	5819
safener <i>fb</i> Bispyribac-sodium	25							
T_{s} Oxadiargyl <i>fb</i> Azimsulfuron	75 <i>fb</i> 20	Pre fb Post	3593	1783	5376	3423	2163	5585
T_{6} . Oxadiargyl <i>fb</i> Bispyribac-sodium	75 fb 25	Pre fb Post	3302	1757	5059	3261	2136	5397
T_{T_1} Pyrazosulfuron ethyl βb Azimsulfuron βb	25 fb 20 fb 4	Pre fb Post fb	4714	1857	6571	4687	2257	6944
Metsulfuron methyl + Chlorimuron ethyl		Post						
$T_{8.}$ Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium	25 fb 25 fb 4	Pre fb Post fb	4599	1785	6384	4661	2268	6929
fb Metsulfuron methyl + Chlorimuron ethyl		Post						
$T_{9.}$ Bensulfuron methyl + Pretilachlor with	60 + 500 fb	Pre fb Post fb	5107	1897	7005	5313	2291	7604
safener fb Azimsulfuron fb Metsulfuron	20 <i>fb</i> 4	Post						
methyl + Chlorimuron ethyl								
T_{10} Bensulfuron methyl + Pretilachlor with	60 + 500 fb	Pre fb Post fb	4828	1877	6706	5014	2271	7284
safener fb Bispyribac-sodium fb Metsulfuron	25 <i>fb</i> 4	Post						
methyl + Chlorimuron ethyl								
T_{11} Oxadiargyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron	75 fb 20 fb 4	Pre fb Post fb	4666	1762	6428	4601	2247	6849
methyl + Chlorimuron ethyl		Post						
T_{12} Oxadiargyl <i>fb</i> Bispyribac-sodium <i>fb</i> Met-	75 fb 25 fb 4	Pre fb Post fb	4371	1773	6145	4437	2222	6658
sulfuron methyl + Chlorimuron ethyl		Post						
T_{13} . Weed free		I	5450	1942	7392	5455	2289	7744
T _{14.} Weedy check		I	2159	1738	3896	2529	2056	4585
*fb - followed by								

Journal of Rice Research 2020, Vol 13, No. 1 * 71

Table 3. Economics of rice-green gram sequence as influenced by different weed management practices during 2015-16 and 2016-17 kharif and rabi seasons		
omics of rice-green gram sequence as influenced b i seasons	nent practices durin	
omics of rice-green gram sequence as influenced b i seasons	fferent v	
l. 'i	nomics of rice-green gram sequence as influenced b	if and <i>rah</i> i seasons

Treatments	Dose	Time		2015-16			2016-17	
	(g ha ⁻¹)	(DAS)	Gross	Net re-	B: C	Gross	Net	Return per
			returns	turns (De be-l)	Ratio	returns	returns	rupee
			(IXS. II2 ')	(KS. IIa ⁻)		(KS. IIa ⁻)	(KS. Ad. ')	Invesument
T_1 Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron	25 fb* 20	Pre fb Post	88138	38206	1.42	93095	40913	1.58
T_2 Pyrazosulfuron ethyl fb Bispyribac-sodium	25 <i>fb</i> 25	Pre fb Post	83704	33114	1.23	91480	38640	1.49
T_{3} Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron	60 + 500 fb 20	Pre <i>fb</i> Post	92673	40877	1.47	103790	49743	1.81
T_4 Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium	60 + 500 fb 25	Pre <i>fb</i> Post	85495	33040	1.21	94512	39807	1.38
T_{s} Oxadiargyl <i>fb</i> Azimsulfuron	75 <i>fb</i> 20	Pre fb Post	83702	33511	1.26	90014	37573	1.47
T_{6} Oxadiargyl <i>fb</i> Bispyribac-sodium	75 fb 25	Pre fb Post	78872	28023	1.07	86969	33870	1.34
T_{γ} Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron <i>fb</i> Metsul- furon methyl + Chlorimuron ethyl	25 <i>f</i> b 20 <i>f</i> b 4	Pre fb Post fb Post	102137	48406	1.63	111866	55885	1.93
T_8 Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 <i>f</i> b 25 <i>f</i> b 4	Pre <i>fb</i> Post <i>fb</i> Post	99181	44791	1.48	111856	55216	1.90
T_{9} , Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlo- rimuron ethyl	60 + 500 fb 20 fb 4	Pre fb Post fb Post	108647	53050	1.72	122288	64442	2.11
T_{10} . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 fb 25 fb 4	Pre fb Post fb Post	104208	47953	1.56	117337	58832	1.94
T_{11} Oxadiargyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 <i>f</i> b 20 <i>f</i> b 4	Pre fb Post fb Post	100139	46149	1.52	110100	53860	1.87
T_{12} . Oxadiargyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 <i>f</i> b 25 <i>f</i> b 4	Pre <i>fb</i> Post <i>fb</i> Post	95825	41176	1.37	107566	50667	1.75
T_{13} . Weed free	I	I	114376	48696	1.41	124482	56552	1.70
T_{14} . Weedy check	ı	ı	60882	13202	0.63	74005	24075	1.05
*fb - followed by								

72 ★ Journal of Rice Research 2020, Vol 13, No. 1

treatment to *kharif* rice realized the highest economic yield in terms of rice grain equivalent yield in the rice-green gram system was however, comparable to other effective treatments (T_9 and T_{10}) owing to the cumulative effect of higher rice yield as well as seed yield of green gram in the system. Reddy *et al.* (2017) reported similar findings on rice grain equivalent yield with legumes as a component crop.

Economics

Varied weed management practices adopted in the rice rice-green gram system altered the economics of system as a whole during both the years of study (**Table 3**). Though weed free treatment (T_{13}) resulted in higher gross returns during both the years of study (Rs. 114376 and Rs. 124482 ha⁻¹ during 2015-16 and 2016-17, respectively) the net returns and return per rupee invested were markedly higher under T_9 and T_{10} , respectively during both the years. Weedy check (T_{14}) registered the lowest gross returns, net returns and return per rupee investment during both the years of study.

The economics of rice-green gram sequence play a vital role in making a recommendation for adoption of technology on farmer's field. In the present investigation the pre-emergence application of bensulfuron methyl @ 60 g a.i. ha⁻¹ + pretilachlor with safener at 500 g a.i. ha⁻¹ followed by post-emergence application of azimsulfuron @ 20 g a.i. ha⁻¹ at 25 DAS, post-emergence application of metsulfuron methyl and chlorimuron ethyl @ 4 g a.i. ha⁻¹ applied at 45 DAS (T₉) was the most profitable with the net returns (Rs. 53050 and Rs. 64442 ha⁻¹ during 2015-16 and 2016-17, respectively) over the other treatments. The findings are similar to the results in the report of Reddy *et al.* (2017).

References

Ajay Singh, Nandal DP and Punia, SS. 2017.
Bio-efficacy of sequential application of herbicides on weeds and yield in direct seeded rice (Oryza sativa). International Journal of Current Microbiology and Applied Sciences, 6(4): 900-905.

- Arif Muhammad, Fazal Munsif, Muhammad Waqas, Ibni Amin Khalil & Kawsar Ali. (2007). Effect of tillage on weeds and economics of Fodder maize production. *Pakistan Journal of Weed Science Research*, 13(3-4): 167-175, 2007.
- Buhler CD. 1992. Population dynamics and control of annual weeds in corn as influenced by tillage systems. *Weed Science*, 40:241-248.
- FAO 2002. Major weed problems in rice e red/weedy rice and the *Echinochloa* complex R. Labrada.
 In: Rice Information Volume 3. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/005/y4347e/ y4347e03.htm#bm03.
- Gomez KA and Gomez AA. 1984. Statistical Procedures for Agricultural Research (2 ed.). John wiley and sons, New York, 680 p.
- Hossain A and Mondal DC. 2014. Weed management by herbicide combinations in transplanted rice. *Indian Journal of Weed Science*, 46 (3): 220–223.
- Karlen LD, Buhler DD, Ellusbury, MM. & Andrews SS. 2002. Soil, weeds and insect management strategies for sustainable agriculture. *Journal of Biological Sciences*, 2(1):58-62.
- Khan I, Hassan,G, Khan, MI and Khan IA. 2004. Efficacy of some new herbicidal molecules on grassy and broadleaf weeds in wheat-II. *Pakistan Journal of Weed Science Research*, 10(1-2):33-38.
- Kumaran ST, Kathiresan G, Murali Arthanari P, Chinnusamy C and Sanjivkumar V. 2015. Efficacy of new herbicide (bispyribac sodium 10% SC) against different weed flora, nutrient uptake in rice and their residual effects on succeeding crop of green gram under zero tillage. *Journal of Applied and Natural Science*, 7(1): 279-285.
- Mahajan G and Chauhan BS. 2013. Herbicide options for weed control in dry-seeded aromatic rice in India. *Weed Technology*, 27:682-689.

- Maity SK and Mukherjee PK. 2008. Integrated weed management in dry direct seeded rainy season rice (*Oryza sativa*). *Indian Journal of Agronomy*, 53:116-120.
- Mazid MA, Jabber MA, Mortimer M, Wade LJ, Riches CR and Orr AW. 2003. Improving rice-based cropping systems in north-west Bangladesh: diversification and weed management. In: The BCPC International Congress, Crop Production and Protection, pp. 1029 -1034.
- Munda GC, Mokidil Islam, Panda BB and Patel DP (2008). Performance of rice (*Oryza sativa* L.)-rape seed (*Brassica campestris* L.) cropping sequence under system based nutrient management. *Oryza*, 45 (1): 36-39.
- Naseeruddin R and Subramanyam D. 2013. Performance of low dose high efficacy herbicides in drum seeded rice. *Indian Journal of Weed Science*. 45 (4): 285–288.
- Rammu Lodhi, 2016. Efficacy of Bensulfuron methyl
 + Pretilachlor against Weeds in Transplanted
 Rice. *M.Sc Thesis*. Jawaharlal Nehru Krishi
 Vishwa Vidyalaya, Jabalpur, India

- Reddy SR. 2017. Impact of herbicides and microbial inoculants on weed and soil health management of *rabi* maize-green gram crop sequence in vertisols.*Ph.D Thesis*. Acharya N G Ranga Agricultural University, Lam, Guntur, India
- Singh RG, Singh S, Singh V and Gupta RK. 2010. Efficacy of Azimsulfuron applied alone and tank mixed with Metsulfuron+Chlorimuron (Almix) in dry direct seeded rice. *Indian Journal of Weed Science*, 42(3 & 4): 168–172.
- Singh S, Bhushan L, Ladha JK, Gupta RK, Rao AN, Sivaprasad B. 2006. Weed management in dry-seeded rice (Oryza sativa) cultivated in the furrow-irrigated raised-bed planting system. *Crop Protection*, 25:487-495.
- Singh SS, Kumar Narendra, Praharaj CS and Singh NP. 2017. Technical bulletin on Agrotechnologies for enhancing pulses production in rice fallows. ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024 (India). 36 pp.