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Abstract
Rice planthoppers have again attained a major pest status in this century causing enormous yield losses 
through direct feeding and transmission of pathogenic viruses. Consequently, there has been increased focus 
of research on their biology, genetics and molecular biology in search of alternative methods to manage 
them.  This review highlights main findings of these studies to reveal how genetic plasticity of the brown 
planthopper (BPH) has equipped the species to fight back adversities and pose challenges for its effective 
management. Genome of BPH with size of 1141 Mb spread across 30 chromosomes is predicted to have 
27,571 genes. Salivary glands, first line of offense, secrete proteins that trigger either susceptibility (ETS) 
or immunity (ETI) reaction in the host plant. Fat bodies, spread all over the body, are sites of primary lipid 
metabolism, endocrine regulation, systemic immunity, vitellogenesis, and housing of microbial symbionts. 
BPH harbours yeast like symbionts (YLS) in its fat bodies that play critical role in insect survival. BPH 
populations across Asia have acquired resistance against almost all classes of insecticides which has been 
attributed to neofunctionalization of duplicated P450 genes. So far about 40 major host plant resistance genes 
and 72 QTLs have been reported from cultivated rice and its wild relatives but BPH has ability to quickly 
evolve virulent populations. Role of cytochrome P450 enzymes and of symbiotic YLS in this ability has been 
shown.  Several studies have focused on the reproductive physiology of BPH and identified key genes that 
can be target for RNAi mediated silencing as novel strategy for pest management. Several recent studies have 
also covered genetic and molecular basis of wing polymorphism and adaptation for long distance migration 
in this insect. Other recent studies on effect of climate change on BPH incidence and its genetic ability to 
adapt to the changes in the weather and climate have cautioned that this insect is likely to continue to be a 
major problem in days to come. On a larger perspective, this rapidly expanding knowledge is providing us 
with novel approaches and tools to contain the pest and stay a step ahead of it in the evolutionary race.
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Introduction
Rice brown planthopper (BPH), Nilaparvata lugens 
(Stal), along with the other two sympatric species 
whitebacked planthopper (WBPH), Sogatella 
furcifera (Horvath) and small brown planthopper 
(SBPH), Laodelphax striatella (Fallen), has again 
attained a major pest status in this century (Bentur 
and Viraktamath, 2008; Bottrell and Schoenly, 2012).  
Despite 46 species of planthoppers being reported to 

feed on rice, these three species, especially BPH, have 
challenged rice production in intensive rice cultivation 
belt across Asia.  It especially causes direct damage 
in all stages of life cycle, particularly nymph and 
adult stages, by direct feeding on phloem sap and by 
transmitting ragged stunt virus and grassy stunt virus 
diseases. Prior to 1980s BPH was not even reckoned as 
a pest of rice.  This phenomenal evolutionary success, 
as it is now emerging through intensive studies, is 

*Based on the invited talk delivered at 53rd ARW on 15-4-2018 ;  †Principal Scientist (Retd.), ICAR-IIRR, jbentur@yahoo.com



10  H  Journal of Rice Research 2020, Vol 13, No. 2

attributed to its genetic plasticity and adaptability.  
Due to its high economic impact on rice production, 
a large number of researcher groups across the world 
have been engaged in intensive studies during the past 
five decades.  This has resulted in explosion of over 
770 research publications during last five decades 
(Figure 1).  The major focus of these studies has been 
on insecticide resistance related (30%), insect-plant 
interactions (22%) and reproduction (19%). There 
have been excellent reviews published recently (Fujita 
et al., 2013; Ling and Weillin 2016, Du et al., 2020, 
Haliru et al., 2020) covering specifically insect-plant 
interactions.  However, no comprehensive review is 
available. An attempt is made here to briefly review 
the broad progress in our understanding of BPH 
biology, genetics and its interaction with host plant.

Genome of BPH has been sequenced (Xue et al., 
2014) and noted with size of 1141 Mb spread across 
30 chromosomes. Relatively, BPH genome size is 
the largest in comparison with those of WBPH (720 
Mb, Wang et al., 2017)) or SBPH (541 Mb, Zhu et 
al., 2017).  In all, 27,571 genes have been predicted; 
of which 10,245 have been assigned gene ontology 
while 16,330 genes are noted to be specific to BPH.  
BPH is monophagous with its feeding confined to rice 
(Oryza), having shifted its host from Leersia over the 
past 0.25 million years (Sezer and Butlin, 1998). 

Salivary Glands
Salivary glands are the first line offense of BPH while 
attempting to feed on rice plant. These produce two 
types of secretions: a coagulating gelling secretion 
that quickly hardens to form salivary sheath around 
the probing stylets consisting of polyphenol oxidase 
and peroxidase enzymes, and a watery secretion that 
contains digestive enzymes like alkaline phosphatase, 
esterase, amylase, beta glucosidase as well as other 
components mainly secretary salivary gland proteins 
(SSGPs).  These SSGPs are main class of effectors 
that trigger susceptibility (ETS) or immunity (ETI) 
depending on the rice genotype BPH is attempting 
to feed upon (Huang et al., 2017; Ji et al., 2017; Ye 
et al., 2017). Of the 352 reported genes encoding 
putative secreted proteins of salivary gland, 67 genes 
are differentially expressed in TN1 and Mudgo reared 
insects (Ji et al., 2013). Rao et al., (2019) characterized 
six of the effector proteins. A mucin-like protein 
is required for feeding by BPH but it also induces 
immunity response in plants acting like an effector 
(Shangguan et al., 2018). Application of salivary gland 
extract to rice plants induces systemic host mRNA 
patterns associated with nutrient remobilization 
(Petrova and Smith, 2015). Thus, salivary gland of 
BPH has a repertoire of effector proteins which can 
evolve rapidly to overcome host mediated resistance.

Figure 1: Number of publications on BPH appearing year-wise and the focus of the study (Source: Pubmed)
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Fat Bodies
Insect fat body is a highly dynamic tissue composed 
primarily of storage cells. It is distributed throughout 
the insect’s internal body cavity; the haemocoel, 
near the epidermis, digestive organs and ovaries. 
Akin to the combination of liver and adipose tissue 
in mammals, fat bodies are site of primary lipid 
metabolism, endocrine regulation, systemic immunity, 
vitellogenesis, and housing of microbial symbionts. 
BPH harbours yeast like symbionts (YLS) in its fat 
bodies that play critical role in insect survival. While 
the insect can degrade seven of the amino acids 
independently, six of these are catabolised exclusively 
by YLS while seven more of these are degraded by both 
(Wan et al., 2015).  Impaired lysine degradation by 
YLS negatively affects the survival and development 
of N. lugens. Transcriptome analysis of fat bodies 
from two BPH populations with different virulence 
levels revealed that these are sites of intermediate 
metabolism, immunity and detoxification of 
xenobiotics (Yu et al., 2014).  Expression of several 
of the genes in BPH population reared on Mudgo rice 
differed significantly from those reared on TN1 rice.  
Lipid, amino acid and xenobiotic metabolism related 
genes were significantly upregulated in the Mudgo 
population.  Protein transport related genes in YLS, 
and cell division and ribosome assembly related genes 
in another symbiont Wolbachia were upregulated in 
this population.  These studies highlight the critical 
role of the symbionts in BPH virulence on resistant 
genotypes.  
Insecticide Resistance
BPH populations across Asia have acquired resistance 
against almost all classes of insecticides (Matsumura 
et al., 2009; Garrood et al., 2015; Wu et al., 2018). 
There have been intensive studies on evolution 
and mechanism of insecticide resistance.  Role of 
P450 genes, a family with 54 genes, in insecticide 
resistance in BPH has been extensively documented.  
Neofunctionalization of duplicated P450 genes 
drives the evolution of insecticide resistance in the 
insect (Zimmer et al., 2018). Garrood et al., (2015) 
studied field-evolved resistance to imidacloprid and 
ethiprole in populations of BPH collected from across 
South and East Asia.  Association of overexpression 

of CYP6ER1 gene with resistance to imidacloprid, 
thiamethoxam and buprofezin was noted. RNA 
interference of this CYP6ER1 gene resulted in 
susceptibility (Garrood et al., 2015; Pang et al., 
2016).  However, P450 CYP6AY1 was over expressed 
in one of the Indian populations.  Synergistic and 
compensatory effects of two- point mutations in 
the insect GABA receptor RDL confer resistance to 
fipronil (Zhang et al., 2015). Carboxyl esterase gene 
(NlCarE) plays an important role in chlorpyrifos 
detoxification and its overexpression may be involved 
in chlorpyrifos resistance in N. lugens (Lu et al.,, 
2017). RNA interference of NADPH-cytochrome 
P450 reductase (CPR) increases susceptibility to 
insecticides including buprofezin (Liu et al., 2015).
Host-plant Resistance
Major emphasis of BPH management is on 
development of resistant rice varieties exploiting host 
plant resistance (Brar et al., 2009). So far about 40 
major genes and 72 QTLs conferring resistance to 
BPH have been reported from cultivated rice and its 
wild relatives (Fujita et al., 2013, Ling and Weillin 
2016, Du et al., 2020, Haliru et al., 2020). A major 
limitation here is the ability of BPH to quickly evolve 
virulent populations, often referred to as biotypes, 
capable of overcoming host resistance.  Recent 
studies have been aiming to understand genetic and 
molecular basis of such virulence in BPH.  Role of 
cytochrome P450 enzymes in virulence was studied 
by Peng et al., (2017) who noted that among the 21 
Cyp genes CYP4C61 gene expressions was more in 
virulent biotype Y than in biotype 1. They suggest that 
duplication of P450 genes in BPH genome is likely 
contributing to adaptation to host plant resistance, as 
in case of insecticide resistance noted above. Role 
of symbiotic YLS in metabolic response of BPH 
while feeding on resistant rice has been studied (Liu  
et al., 2017). The study showed significant metabolic 
differences between BPH nymphs feeding on the 
resistant NIL-BPH15 and susceptible TN1 rice. To 
survive on this resistant rice, BPH nymphs probably 
ingest more sap and/or get necessary nutrients from 
their yeast-like symbionts at later feeding stages. 
Jing et al., (2014) and Kobayashi et al., (2014) have 
attempted to map virulence loci that break down host 
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resistance on BPH genome using molecular markers.  
Over 860 markers including 125 gene specific 
markers have been reported and used in mapping 
three virulence loci Qhp7, Qgr5 & Qgr14 (Jing et al., 
2014). Kobayashi et al., (2014) mapped the virulence 
gene vBph1 located in the 1.8 cM genomic region 
flanked by SNPmarkers VLS01 and VLS05 of linkage 
group 10.
Reproductive Physiology
Another feature of the brown planthopper that has 
enabled its evolutionary success is its reproductive 
potential. Several studies have focused on the 
reproductive physiology of BPH.  Role of Broad-
Complex (Br) and Krüppel homolog 1 (Kr-h1), two 
transcription factor gens down stream of juvenile 
hormone and ecdysone pathways in the ovary 
development was noted by Jiang et al., (2017). An 
adenylyl cyclase like-9 gene (NlAC9) influences 
growth and fecundity in BPH (Ge et al., 2017a).  
PHF7, a novel male gene influences female fecundity 
and population growth through secretion of accessory 
gland and transferred to female through mating (Ge 
et al., 2017b). This can be a target gene for RNAi 
mediated gene silencing to reduce population growth 
of the insect.  Ge et al., (2016) have also shown that 
suppressing male spermatogenesis-associated protein 
5-like gene expression reduces vitellogenin gene 
expression and fecundity.  Yu et al., (2016) identified 
94 seminal fluid proteins in the male accessory glands 
of BPH of which four were unique to this insect. 
Forkhead box transcription factor L2 activated follicle 
cell protein gene NlFcp3C to regulate insect chorion 
formation (Ye et al., 2017). Role of juvenile hormone 
(JH) secreted by corpora allata has been studied 
intensively. TOR pathway-mediated JH synthesis 
regulates nutrient-dependent female reproduction (Lu 
et al., 2016), while nutritional signaling also regulates 
vitellogenin synthesis and egg development through 
JH (Liu et al., 2016). Silencing a sugar transporter 
gene Nlst6 reduces growth and fecundity. Several 
agro-chemicals like antibiotics or even insecticides 
stimulate BPH reproduction.  Adipose triglyceride 
lipase (Atgl) mediates the antibiotic jinggangmycin- 
stimulated reproduction (Jiang et al., 2015). Sub-

lethal doses of triazophos and fenvelrate insecticides 
also induce reproduction (Bao et al., 2008). 
Wing Polymorphism and Migration
A special trait of interest for BPH is its ability to 
migrate long distance being carried by the wind 
currents (Otuka et al., 2008). To suit to this adaptation, 
the insect has wing dimorphism involving short 
winged brachyperous forms with high fecundity and 
long winged macropterous form suited to long distance 
migration. Several recent studies have covered genetic 
and molecular basis of wing polymorphism and 
adaptation for long distance migration.  There is an 
ovarian diapause in macropterous females prior to 
migration and TOR (target of rapamycin) genes are 
shown to be involved in this diapause (Liu et al., 
2016). Zhou et al., (2017) showed that transformer-2 
(NlTra-2) determines sex in nymph and wing shape of 
the progeny. They also suggested the important role 
of NlJHEH (juvenile hormone epoxide hydrolase) 
gene in determining the wing morph.  Higher levels 
of JH in V instar nymph lead to development of short 
wings. Xu and Zhang (2017) explained the molecular 
basis by which two insulin receptors (InR1 and InR2) 
act as switches to determine alternative wing morphs 
in the BPH.
Climate Change Adaptation
There have been several recent studies on effect of 
climate change on BPH incidence and genetic ability 
of the insect to adapt to the changes in the weather and 
climate.  Pandi et al., (2018) studied impact of elevated 
CO2 and temperature on BPH in rice ecosystem. They 
observed that increased CO2 and temperature resulted 
in escalated BPH multiplication through increase in 
both fecundity and number of adults, thus inflicting 
higher yield loss in rice.  Similar study in Bangladesh 
by Ali et al., (2014) showed months or areas 
characterized by a climate that is either cold and dry or 
hot and wet that are likely to experience higher levels 
of BPH due to climate change. At high temperature 
(37 °C), heat shock protein (HSP) genes were the 
most co-regulated (Huang et al., 2017). Macropterous 
are more heat resistant than brachypterous adults. Up-
regulation of NlHsc70 gene provides more thermal 
tolerance/resistance in macropterous adults (Lu et al., 
2016a, b). 
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Perspectives
This rapidly expanding knowledge on BPH and other 
related planthoppers of rice has not only given us an 
insight into its evolutionary superiority but also has 
revealed several ‘weak points’ that can be tweaked 
to our advantage from pest management point of 
view.  RNAi based approach and the key target genes 
identified can be used for the purpose. Genome editing 
aiming at susceptibility genes is another promising 
alternative.  Resequencing of scores of rice genotypes 
and the emerging identification of superior haplotypes 
of the known and unknown resistance genes can 
widen our choice in host-plant resistance deployment 
approach.  It is thus probable that we may stay a step 
ahead of it in the evolutionary race.
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