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Abstract
Bioash (mineral residue left after oxidation of different biomass) is physicochemical complex, ultra-alkaline, and 
potentially hazardous waste, with a huge potential to become value-added products for; i) chemical amelioration of acid 
and nutrient-deficient soils in agro-/forest-ecosystems, ii) wastewater purification and iii) civil and bio-tech engineering. 
It was confirmed that finely-powdered bioash structure is the main operational management obstacles for its use in 
land amelioration; hence, specifically designed forms (e.g. pellets, microspheres, emulsions, granules) are needed to 
temporarily stabilized the bioash reactive form(s), making them more applicative. In addition, application and relatively 
low bioash rates (e.g. several tons per ha) can induce significant perturbations in targeted (cultivated crops/forests, 
removal of pathogens) and adjunct (bacteria, fungi) biota. Overall, bacteria responded more pronouncedly to ash 
amendment than fungi. However, amendment effects vary depending on the properties of both the ash and the target 
soil, so these aspects need to be considered closely.
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Introduction 
The reduction in greenhouse gas emission decarbonisation 
and promoting bio-renewables, especially forest/agro 
biomass, has resulted in an increased use of biomass-
derived energy sources. However, one of important 
environmental issue arising from such progressive 
increase in the amount of biomass used for renewable 
energy generation is an increase in biomass-derived 
ash (bioash) waste material (Ondrasek et al., 2021a). 
However, bioashes as alkaline and mineral-enriched waste 
co-products have multi-benefit advantages for reusing as 
soil conditioners in chemical amelioration of agro-/forest-
ecosystems and some other sectors (e.g. civil and bio-tech 
engineering, construction, waste management) (Figure 1).

It was confirmed that physicochemical properties of 
bioash are closely related to their feedstock composition 
and combustion parameters. For instance, combustion 
temperatures >400◦C increase the levels of bioash 
carbonisation and promote the aromatic condensation of 
degraded aliphatic groups, followed by losses of O2, H and 
N atoms during dehydration and decarboxylation processes 
(Ondrasek et al., 2021a). A pH reaction of wood-derived 
bioashes is generally strongly alkaline (11.8–13.1), mostly 
due to a high content of alkaline oxides (e.g. in %; CaO 
>47, SiO2 >12, K2O >11, MgO >4; Ondrasek et al., 2021a). 

Figure 1: Bioashes and their potential for reuse to 
sustain ecosystem services and underpin circular 

economy 

In comparison with coal ashes, bioashes usually have 
lower abundance of S-containing minerals (e.g. arcanite – 
K2SO4), making them highly effective in reclamation of soil 
acidity, nutrient deficiency, and immobilization of potentially 
toxic metals and/or metalloids. 
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Bioash effects on soil pH and nutrients recovery 

Numerous studies have been conducted using diverse 
bioash matrices (e.g. fly ash, bottom ash), revealing 
positive effects of bioash application on pH and nutrient 
recovery as well other pedovariables. For instance, 
controlled experiments confirmed strong basic reaction 
of wood ash leachates (pH 12-13) (Cabral et al., 2008; 
Freire et al., 2015) as a result of hydrolysis, dissolution 
and weathering of dominantly alkaline oxides, hydroxides, 
carbonates, bicarbonates, silicates, silanols and other 
metal salts (Doudart de la Grée et al., 2016; Vassilev et 
al., 2013) capable of displacing exchange able H+, Al3+ 
and/or Mn2+ from the soil CEC (Maresca et al., 2018; Shi 
et al., 2017) or even removing some of them (e.g. Al3+) 
as precipitates down the soil profile (LI et al., 2010). 
Consequently, bioashes neutralise strongly and rapidly 
different acidic soils, and increase availability of most 
macro/micronutrients in soils. Recently was shown that fly 
bioash addition can strongly rise soil pHKCl (up to 9.1), and 
the content of most phytonutrients (up to 5.4-fold); however 
its addition at >1.25% can restrict the maize root and shoot 
growth, likely due to alkaline stress as indicated by necrotic 
and chlorotic symptoms at >5.0% rate (Ondrasek et al., 
2021b). In addition, fly bioash increased total concentration 
of metals in soil (without exceeding the levels recognized 
as contamination), whereas phytoextraction of Cd, Zn, Mn, 
Cu and Mo was significantly suppressed (Cd by almost 
12-fold), confirming that fly bioash improved soil-plant 
metal immobilization, shifting rhizosphere biogeochemistry 
towards chemisorption reactions (Ondrasek et al., 2021b).

Some studies showed that bioashes induce stronger and 
faster pH recovery as well as higher acid neutralizing 
capacity (ANC) than other liming materials (e.g. limestone, 
dolomite) (Cabral et al., 2008; Ondrasek et al., 2020; 
Ondrasek et al., 2021c). These findings can be explained 
highly reactive and developed surface and chemically/
mineralogically more complex bioash matrix (vs. dolomite/
lime) and ii) domination of the more reactive hydroxide 
fraction (in ash) over relatively slowly reactive carbonate 
fraction (in dolomite/lime). 

Additionally, bioash matrices have a huge potential 
for further improvements to optimize their use as soil 
conditioners/fertilizers. For instance, (Zhao et al., 2019) 
showed that different bioashes can be qualitatively 
improved if co-incinerated with sewage sludge, resulting in 
transfer of relatively poorly available P (AlPO4) to its more 
readily-available mineral forms [e.g. Ca2P2O7, Ca5(PO4)3Cl, 

Ca4Mg5(PO4)6 and Ca3(PO4)2] that are highly desirable 
in fertilizers/soil amendments. The content of other 
macronutrients such as N (which is lost to the atmosphere 
in gaseous forms during combustion) can also be boosted 
in bioash materials. By mixing wood- and peat-derived fly 
ash with an appropriate proportion of sewage sludge and 
lime, (Pesonen et al., 2016) created fertilizer aggregates 
with N content increased by more than an order of 
magnitude (e.g. from 120 to 2690 mg N/kg). 

Bioash effects on soil microbiomes 
Given that wood ash has been used as a soil amendment 
for several decades, many studies have investigated its 
impact on the soil microbial communities that play a key role 
in nutrient cycling, plant growth and carbon sequestration 
(Fierer, 2017). Ash amendments were shown to increase 
microbial activity as measured by soil CO2 production 
(Bååth and Arnebrant, 1994, Khanna et al., 1994), as well 
as microbial biomass turnover or growth rate (Lupwayi 
et al., 2009) and nutrient cycling (Perkiömäki and Fritze, 
2005; Saarsalmi et al., 2012). In addition, ash addition 
changed soil bacterial abundance (Bååth and Arnebrant, 
1994; Bang-Andreasen et al., 2017; Vestergård et al., 
2018). However, some of these effects were recorded 
only after high application rates or repeated applications 
of ash (Omil et al., 2013; Pennanen, 2001). In addition 
to stimulating microbial abundance and activity, the 
application of ash typically altered soil bacterial community 
structure (Liiri et al., 2002; Lupwayi et al., 2009; Mahmood 
et al., 2003; Perkiömäki et al., 2003) or total microbial 
community structure (Perkiömäki and Fritze, 2005). For 
instance, by using 16S rRNA gene amplicon sequencing, 
(Bang-Andreasen et al., 2017) and (Noyce et al., 2016) 
reported shifts in the soil bacterial community composition 
after wood ash application, with the enrichment of 
copiotrophic bacterial groups such as Bacteroidetes and 
a decline in oligotrophic phylum such as Acidobacteria. In 
contrast to (Noyce et al., 2016) who found no difference in 
the bacterial community with increasing ash addition from 
0.7 to 5.7 t ha-1, (Bang-Andreasen et al. (2017) found more 
pronounced effects with increasing ash addition rate from 
5 t ha-1 (the current legislation threshold in Scandinavian 
countries) to 22 t ha-1. However, detrimental effects on soil 
bacteria were observed only at an extreme, unrealistic rate 
of 167 t ha-1, with alkaliphilic genus Alcalibacterium and 
spore-forming bacteria dominating. 

In addition, some studies revealed that the fungal 
communities showed only minimal responses to ash 
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addition compared to bacterial communities (Bang-
Andreasen et al., 2020; Mahmood et al., 2003; Noyce 
et al., 2016). Other studies found that addition of high 
rates of ash to soil increased fungal abundance (Bååth 
et al., 1995; Bang-Andreasen et al., 2020), especially 
the abundance of fast-growing saprotrophic fungi such 
as the genera Mortierella and Peziza as well the order 
Hypocreales (Bang-Andreasen et al., 2020). Compared 
to free-living fungi, the impact of ash on ectomycorrhizal 
(EM) and arbuscular mycorrhizal (AM) fungi, which 
make symbiotic associations with plant roots improving 
plant nutrient uptake, remains less clear. Several studies 
reported changes in EM fungal species composition after 
wood ash applications. Typical acidophilic species such 
as Tylospora fibrillosa, Piloderma croceum and Russula 
ochroleuca decreased in relative abundance, whereas that 
of species from genera Amphinema and Tuber increased 
(Kjøller et al., 2017; Klavina et al., 2016; Mahmood et 
al., 2002; Taylor and Finlay, 2003). In contrast, (Cruz-
Paredes et al., 2019) did not observe a change in the EM 
fungal community composition after adding up to 6 t ha-1 
of wood ash, possibly because the applied doses, which 
were within the recommended dosage range, were much 
lower than high doses in other studies, e.g. 50 t ha-1 in 
(Klavina et al., 2016). Despite above-mentioned changes 
in microbial activity and community composition, some 
studies showed no, or only minor, microbial response to 
wood ash addition (Aronsson and Ekelund, 2004; Huotari 
et al., 2015). However, given a prolonged impact of ash 
(e.g. nearly 14 years after application of silico-aluminous/
sulfo-calcic fly ash (Leclercq-Dransart et al., 2019); or 30-
52 years after application of wood bioash (Moilanen et al., 
2006; Saarsalmi et al., 2012), long-term field studies in 
different pedo-conditions are highly desirable to underpin 
elucidation of ash-induced changes to soil microbiomes.  

Bioash effects on other pedovariables 
Bioashes contain a relatively high proportion of Si and 
its pozzolanic forms and thus can have beneficial effects 
on physico-mechanical variables in texture-heavy clayey 
soils. For instance, addition of fly ash (up to 15% w/w) 
in clay soil significantly reduced the bulk density and 
improved the soil structure, i.e., porosity, workability, root 
penetration and water retention (Sahu et al., 2017), and 
modestly improved soil hydraulic conductivity (Chang et 
al., 1977). Application of the S-Ca and Si-Al fly ashes was 
shown to be effective in lowering soil bulk density in the 
long term, i.e., even around 14 years after amending the 
soil (Leclercq-Dransart et al., 2019). In highly expansive 

and plastic or soft soils (e.g. sensitive to variations in 
water content, showing strong volumetric changes as 
cracking/shrinkage), use of different ashes stabilized the 
soil and improved consistency, reduced plasticity index 
(i.e. free swelling and compressibility), and decreased soil 
dry density, making it coarser than original soil (Jafer et 
al., 2018; Mir and Sridharan, 2013). For wider practical 
application and amelioration of hydraulic and mechanical 
soil properties, the durability and long-term impacts of 
bioashes under different field-relevant conditions should 
be validated further. 
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