

**RESEARCH ARTICLE** 

# *In silico* Identification of Alternatively Spliced Variants from Transcriptome Data of Rice Lines Exhibiting Complete Panicle Exsertion

## Anil A Hake<sup>1</sup>, Nakul Magar<sup>1</sup>, Kalyani M Barbadikar<sup>1\*</sup>, Suneel Ballichatla<sup>1</sup>, Kommana M<sup>1</sup>, Amol S Phule<sup>1</sup>, Gokulan CG<sup>2</sup>, Hitendra K Patel<sup>2</sup>, Ramesh V Sonti<sup>3</sup>, Sundaram RM<sup>1</sup> and Sheshu Madhav Maganti<sup>1,4\*</sup>

<sup>1</sup>ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, India 500030
 <sup>2</sup>CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India 500007
 <sup>3</sup>International Centre for Genetic Engineering and Biotechnology, New Delhi, India 110067
 <sup>4</sup>ICAR-Central Tobacco Research Institute, Rajahmundry, Andhra Pradesh, India 533105
 \*Corresponding author E-mail: sheshu24@gmail.com; kalyaniaau@gmail.com

Received: 20th December, 2023; Accepted: 18th February, 2024

## Abstract

Alternative splicing is a molecular mechanism governing gene expression, particularly in plants, wherein a single gene can yield multiple mRNA transcripts, thereby diversifying the resulting protein isoforms. Panicle exsertion is an important trait associated with grain yield in rice. We deployed the mRNA sequencing (transcriptome) data from incompletely exserted panicle genotype, BPT-5204 and its ethyl methanesulphonate mutant lines *viz.*, CPE-109 and CPE-110 exhibiting completely exserted panicle for identification of Alternative Splicing events. Our systematic analysis using rMATS package revealed 414 and 368 genes alternatively spliced upon the comparison of CPE-109 with BPT-5204 and CPE-110 with BPT-5204 respectively. We identified alternative 3' splice site (A3SS) as the predominant AS type upon comparison of CPE-109 with BPT-5204 (51.20% A3SS) and CPE-110 with BPT-5204 (48.91% A3SS) at panicle initiation stage. In total 23 and 19 genes emanated multiple transcripts *via.*, AS. Remarkably, upon comparison of splicing data of CPE-109 with BPT-5204 and CPE-110 with BPT-5204, we found three common genes namely, *Os07g0406600* encoding DDHD domain containing protein, *Os10g0442100* encoding tRNA methyltransferase and *Os04g0675800* encoding H0103C06.10 protein, that generated more than two transcripts *via.*, AS. These genes can be further validated for determining its role in panicle exsertion through gene expression studies, over expression and functional characterization.

Keywords: Alternative splicing, Complete panicle exsertion, Transcriptome, rMATS, DDHD domain

# Introduction

Alternative splicing (AS) represents a pivotal posttranscriptional and co-transcriptional mechanism inherent to eukaryotic gene expression. Alternative splicing is a cellular course in which exons from the same gene are joined in different combinations, leading to different, but related, mRNA transcripts. Further, these mRNAs from a single gene can be translated to produce different proteins with distinct structures and functions. This intricate process orchestrates the selective inclusion or exclusion of exonic sequences, as well as variations in noncoding regions within pre-mRNA transcripts. Alternative splicing of premRNAs promotes transcriptome and in turn proteome diversity and plays an important role in a wide range



of biological processes in eukaryotes. The regulation through AS is dynamic and depends on the cell type, tissue, environmental condition etc. The pre-mRNAs and interactions of RNA-binding proteins affects the generation of AS isoforms.

The major types of AS events include intron retention (IR), exon skipping (ES), alternative 5' splice sites (A5SS; alternative donor site), alternative 3' splice sites (A3SS; alternative acceptor site), and mutually exclusive exons (MXE). The frequency of AS also varies from species to species for example, in rice and Arabidopsis 33% and 42% of intron-containing genes respectively. It has been reported that 51% of intron-containing genes utilize alternative 5' or 3' splice sites or exon skipping events.

In plants, AS is integral to the regulation of diverse biological processes, encompassing developmental programs and responses to environmental stimuli. The AS events are well characterized in crops like rice, wheat, maize, etc. under various abiotic and biotic stresses and the isoforms differential expression has been linked to tolerance or resistance in plants (Ganie and Reddy et al., 2021). The NGS methods, notably RNA-Seq, offer a high-throughput and cost-effective means to comprehensively analyse the transcriptome. This allows researchers to identify, quantify, and characterize alternative splicing events on a genomewide basis. The technology's capacity for large-scale data generation has revealed novel insights into the complexity of AS patterns in plants. The methodology and the identification of AS events depends on the technology deployed, sequences / ESTs/ assemblies etc. (Syed et al., 2012). Various tools, pipelines and softwares are available for analyzing alternative splice variations deploying the RNA-seq data sets (Yu et al., 2021).

The rice genotype exhibiting complete exsertion of panicle from flag leaf results in higher grain yield compared to genotype whose panicle is partially choked in flag leaf sheath. Incompletely exerted panicle from flag leaf results in grain yield loss (Guan *et al.*, 2011; Duan *et al.*, 2012). To avoid such loss, complete panicle exsertion (CPE) is desirable in both hybrids and varieties. Recently, quantitative trait loci (QTL)/ genes/ marker underlying complete panicle exsertion have been mapped (Hake *et al.*, 2023); however, role of alternatively spliced genes in complete panicle exsertion in rice is largely unknown. With a hypothesis that AS variations could have role in CPE, in the present study, we have utilized the RNA-seq data of completely exserted panicle lines, CPE-109 and CPE-110, (stabilized mutants of BPT-5204) and their parent BPT-5204 (exhibited incomplete panicle exsertion) to discern the molecular mechanism underlying panicle exsertion.

### **Materials and Methods**

#### Identification of alternatively spliced (AS) variants

The cleaned reads of RNA-seq data from NCBI Sequence Read Archive (SRA) database (BioProject ID PRJNA687517 and PRJNA772118) of three rice genotypes, namely BPT-5204 (a popular and widely adapted cultivar but incompletely exserted panicle from flag leaf), CPE-109 and CPE-110, stable mutants of BPT-5204, exhibiting complete panicle exsertion from flag leaf were utilized for identification of alternatively spliced variants (Pottupureddi et al., 2021). The reads were mapped on the rice reference genome, R498 using a spliceaware alignment algorithm, HISAT2 (v 2.1.0) (Kim et al., 2019). Splicing events such as skipped exons (SE), intron retention (IR), alternative 5' splice site (A5SS), alternative 3' splice site (A3SS), alternative donor, and acceptor sites were analyzed by utilizing alignment of RNA-Seq data of CPE-109 and CPE-110 with BPT-5204 using the rMATS package 4.1.2, a computational tool to detect differential alternative splicing events from RNA-Seq data (Shen et al., 2014). The graphical representation was executed using the sashimi plot, a tool for RNA-Seq analyses of isoform expression (Kartz et al., 2015).



## **Results and Discussions**

We performed a comprehensive and comparative analysis of AS events using rice transcript (RNAseq) data from flag leaf at panicle initiation stage of three genotypes namely, BPT-5204 (exhibiting incomplete panicle exsertion), CPE-109 and CPE-110 (both exhibiting complete panicle exsertion). In total, 414 and 368 splicing events were identified from RNA-seq data upon the comparison of CPE-109 with BPT-5204 and CPE-109 with BPT-5204 respectively. Upon comparison of RNA-seq data of CPE-109 with BPT-5204, we found 414 spicing events by alternative 3' splice site (A3SS; 212 events) followed by alternative 5' splice site (A5SS; 110 events), retained intron (RI; 64 events) and skipped exons (SE; 28 events) (**Table 1**) observed in 369 genes, off these 22 genes exhibited two or more than two spicing events (**Table 2**). Likewise, upon comparison of RNA-seq data of CPE-110 with BPT-5204, we found 368 splicing events by alternative 3' splice site (180 events) followed by alternative 5' splice site (105 events), retained intron (RI; 56 events) and skipped exons (SE; 27 events) (**Table 3**) in 329 genes, off these 19 genes exhibited two or more than two splicing events (**Table 4**)

Table 1: Study of splicing events for CPE upon comparison of RNA seq data of CPE-109 with BPT-5204

| Sulicing Type              | Chromosome number |    |    |    |    |    |    |    |    |    |    | Total |       |
|----------------------------|-------------------|----|----|----|----|----|----|----|----|----|----|-------|-------|
| Splicing Type              | 1                 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | Total |
| Alternative 3' splice site | 31                | 21 | 28 | 29 | 18 | 12 | 18 | 18 | 9  | 10 | 9  | 9     | 212   |
| Alternative 5' splice site | 15                | 15 | 12 | 10 | 7  | 5  | 13 | 5  | 7  | 8  | 9  | 4     | 110   |
| Retained Intron            | 9                 | 9  | 5  | 7  | 5  | 6  | 8  | 3  | 4  | 0  | 5  | 3     | 64    |
| Skipped Exon               | 4                 | 3  | 5  | 1  | 2  | 1  | 3  | 1  | 3  | 2  | 1  | 2     | 28    |
| Total                      | 59                | 48 | 50 | 47 | 32 | 24 | 42 | 27 | 23 | 20 | 24 | 18    | 414   |

Table 2: Multiple transcripts generated by alternate splicing events for CPE upon comparison of RNAseq data of CPE-109 with BPT-5204

| Gene (MSU ID) Gene (RAP ID) |                                   | Description of gone                                                   | Splicing Events |              |              |              |  |  |  |
|-----------------------------|-----------------------------------|-----------------------------------------------------------------------|-----------------|--------------|--------------|--------------|--|--|--|
|                             | Gene (KAI_ID)                     | Description of gene                                                   | A3SS            | A5SS         | RI           | SE           |  |  |  |
| Os01g0720600                | LOC_Os01g52250                    | Starch synthase                                                       | $\checkmark$    | ✓            | ×            | ×            |  |  |  |
| Os08g0451700                | LOC_Os08g35050                    | ARID/BRIGHT DNA-binding domain containing protein                     | $\checkmark$    | ✓            | ×            | ×            |  |  |  |
| Os03g0286200                | LOC_Os03g17730                    | P-protein                                                             | $\checkmark$    | ✓            | ×            | ✓            |  |  |  |
| Os01g0113600                | LOC_Os01g02334                    | Expressed protein                                                     | $\checkmark$    | ✓            | ×            | ×            |  |  |  |
| Os10g0436800                | LOC_Os10g30054                    | ENT domain containing protein, expressed                              | $\checkmark$    | ✓            | ×            | ×            |  |  |  |
| Os07g0406600                | LOC_Os07g22390                    | DDHD domain containing protein                                        | $\checkmark$    | ✓            | ×            | ×            |  |  |  |
| Os03g0811900                | LOC_Os03g59740                    | ADP-ribosylation factor                                               | ✓               | ×            | $\checkmark$ | ×            |  |  |  |
| Os03g0219200                | LOC_Os03g11960                    | Copper/zinc superoxide dismutase, putative, expressed                 | $\checkmark$    | х            | $\checkmark$ | ×            |  |  |  |
| Os03g0219900                | LOC_Os03g12020                    | 50S ribosomal protein L15, chloroplast precursor, putative, expressed | √               | ×            | ~            | ×            |  |  |  |
| Os02g0321000                | LOC_Os02g21570;<br>LOC_Os02g21580 | PPR repeat containing protein, expressed                              | √               | ×            | ×            | ~            |  |  |  |
| Os03g0156700                | LOC_Os03g06090                    | High-affinity nickel-transport family protein, putative, expressed    | √               | ×            | ×            | ~            |  |  |  |
| Os09g0513400                | None                              | Hypothetical protein                                                  | ✓               | ×            | ×            | $\checkmark$ |  |  |  |
| Os08g0430300                | LOC_Os08g33350                    | Expressed protein                                                     | $\checkmark$    | ×            | ×            | $\checkmark$ |  |  |  |
| Os10g0442100                | LOC_Os10g30550                    | tRNA methyltransferase                                                | $\checkmark$    | ×            | ×            | $\checkmark$ |  |  |  |
| Os04g0675800                | LOC_Os04g57920                    | Similar to H0103C06.10 protein                                        | ×               | $\checkmark$ | $\checkmark$ | ×            |  |  |  |

42 ★ Journal of Rice Research 2024, Vol 17, No. 1



| Cono (MSU ID)  | Cono (DAD ID)   | Description of gone                               | Splicing Events |      |    |              |  |  |
|----------------|-----------------|---------------------------------------------------|-----------------|------|----|--------------|--|--|
| Gene (MISU_ID) | Gene (KAF_ID)   | Description of gene                               | A3SS            | A5SS | RI | SE           |  |  |
| Os05g0519200   | LOC_Os05g44290  | Protein kinase domain containing protein          | ×               | ✓    | ✓  | ×            |  |  |
| Os06g0102750   | LOC_Os06g01304  | Spotted leaf 11                                   | ×               | ✓    | ✓  | ×            |  |  |
| Os11g0434000   | LOC_Os11g24630  | Magnesium-dependent phosphatase 1                 | ×               | ✓    | ✓  | ×            |  |  |
| Os04g0278200   | LOC_Os04g20960  | Expressed protein                                 | ×               | ✓    | ×  | $\checkmark$ |  |  |
| Os06g0659200   | LOC_Os06g44870; | Type II intron maturase protein                   | ×               | ✓    | ×  | $\checkmark$ |  |  |
|                | LOC_Os06g44880  |                                                   |                 |      |    |              |  |  |
| Os02g0326700   | LOC_Os02g22100  | OsRhmbd6 - Putative Rhomboid homologue, expressed | ×               | ✓    | ×  | $\checkmark$ |  |  |
| Os07g0139500   | LOC_Os07g04700  | MYB family transcription factor                   | ×               | ✓    | ×  | $\checkmark$ |  |  |

A3SS: Alternative 3' splice site; A5SS: Alternative 5' splice site; SE: Skipped Exon; RI: Retained Intron

With the advent of next-generation sequencing technologies, newer aspects of AS events are unfolded (Barbadikar *et al.*, 2024). The AS events creates new combination of transcripts and thus contributes to expanding of the proteome. The AS isoforms are involved in the regulation of post-transcriptional gene expression (Campbell *et al.*, 2006). Interestingly, during panicle initiation stage, most of the genes transcribed by alternative 3' splice site mechanism (212 events in CPE-109 vs BPT-5204 and 180 events CPE-109 vs BPT-5204) signifies its role in panicle exsertion. The isoforms of genes resulted due to splicing events represented by the Sashimi plot (**Figure 1**). Upon comparison

of the splicing data of CPE-109 with BPT-5204, out of 369 alternatively spliced genes, 21 revealed two types of transcripts while one gene namely, Os03g0286200 encoding P-protein produced three transcripts via alternative spicing by alternative 3'splicesite, alternative 5' splicesite and skipped exon (**Table 2**). Likewise, upon comparison of splicing data of CPE -110 with BPT-5204, out of 329 alternatively spliced genes, 18 revealed two types of transcripts while gene Os07g0406600, encoded to DDHD domain containing protein produced three transcripts via alternative spicing by alternative 3' splice site, alternative 5' splice site and skipped exon.

Table 3: Number of splicing events for CPE upon comparison of RNA seq data of CPE-110 withBPT-5204

| Sulising Type              | Chromosome number |    |    |    |    |    |    |    |    |    |    | Total |       |
|----------------------------|-------------------|----|----|----|----|----|----|----|----|----|----|-------|-------|
| Splicing Type              | 1                 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | Total |
| Alternative 3' splice site | 21                | 26 | 26 | 20 | 9  | 9  | 12 | 14 | 7  | 10 | 14 | 12    | 180   |
| Alternative 5' splice site | 15                | 13 | 13 | 9  | 9  | 6  | 11 | 3  | 8  | 6  | 7  | 5     | 105   |
| Retained Intron            | 11                | 5  | 8  | 5  | 2  | 2  | 5  | 4  | 6  | 2  | 4  | 2     | 56    |
| Skipped Exon               | 3                 | 1  | 4  | 2  | 1  | 1  | 5  | 3  | 2  | 2  | 3  | 0     | 27    |
| Total                      | 50                | 45 | 51 | 36 | 21 | 18 | 33 | 24 | 23 | 20 | 28 | 19    | 368   |

| Tabl  | e 4: Multiple transcripts generated b | y alternate splicing | g events for CPE upo | on comparison of RNA |
|-------|---------------------------------------|----------------------|----------------------|----------------------|
| seq d | ata of CPE-110 with BPT-5204          |                      |                      |                      |

| Cono (MSU ID) | Cono (DAD ID)  | Description of gone                                         | <b>S</b> ]   | plicing Ev   | vents        |    |  |  |  |
|---------------|----------------|-------------------------------------------------------------|--------------|--------------|--------------|----|--|--|--|
| Gene (MSU_ID) | Gene (KAF_ID)  | Description of gene                                         | A3SS         | A5SS         | RI           | SE |  |  |  |
| Os07g0406600  | LOC_Os07g22390 | DDHD domain containing protein                              | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×  |  |  |  |
| Os01g0178200  | LOC_Os01g08290 | Similar to integral membrane family protein                 | $\checkmark$ | $\checkmark$ | ×            | ×  |  |  |  |
| Os01g0757800  | LOC_Os01g55300 | DNA polymerase eta domain containing protein                | $\checkmark$ | ✓            | ×            | ×  |  |  |  |
| Os03g0210400  | LOC_Os03g11200 | RNA-processing protein, HAT helix domain containing protein | $\checkmark$ | ~            | ×            | ×  |  |  |  |
| Os05g0588800  | LOC_Os05g51119 | Expressed Protein                                           | $\checkmark$ | $\checkmark$ | ×            | ×  |  |  |  |



| Come (MSU ID) | Come (DAD ID)  | Description of gone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>S</b> ]   | plicing Ev | vents        |              |
|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|--------------|--------------|
| Gene (MSU_ID) | Gene (KAP_ID)  | Diversity of the second |              | A5SS       | RI           | SE           |
| Os06g0691000  | LOC_Os06g47580 | DNA-repair protein, UmuC-like domain containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~            | ~          | ×            | ×            |
| Os01g0102900  | LOC_Os01g01340 | Light-induced protein 1-like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\checkmark$ | ×          | $\checkmark$ | ×            |
| Os02g0740300  | LOC_Os02g50680 | AAA-type ATPase family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\checkmark$ | ×          | ✓            | ×            |
| Os03g0284100  | LOC_Os03g17570 | Similar to Two-component response regulator-like PRR73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~            | ×          | ~            | ×            |
| Os06g0564500  | LOC_Os06g36840 | O-acetylserine (thiol) lyase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\checkmark$ | ×          | ×            | $\checkmark$ |
| Os11g0112900  | LOC_Os11g02159 | Hypothetical conserved gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\checkmark$ | ×          | ×            | ✓            |
| Os10g0442100  | LOC_Os10g30550 | tRNA methyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\checkmark$ | ×          | ×            | ×            |
| Os11g0526900  | LOC_Os11g32369 | Non-protein coding transcript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\checkmark$ | ×          | ×            | ×            |
| Os03g0562000  | LOC_Os03g36419 | Expressed protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×            | ×          | ×            | $\checkmark$ |
| Os07g0203950  | None           | Non-protein coding transcript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            | ×          | ✓            | ×            |
| Os07g0676200  | None           | Non-protein coding transcript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            | ×          | ✓            | $\checkmark$ |
| Os12g0137200  | LOC_Os12g04260 | Similar to Saccharopine dehydrogenase family protein, expressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | ×          | ~            | ~            |
| Os04g0675800  | LOC Os04g57920 | Similar to H0103C06.10 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×            | ×          | ✓            | $\checkmark$ |

A3SS: Alternative 3' splice site; A5SS: Alternative 5' splice site; SE: Skipped Exon; RI: Retained Intron



Figure 1: Two transcripts of gene, *Os01g0178200* produced by alternative splicing a) by alternative 3' splice site and b) by skipped exon mechanism

Remarkably, upon comparison of splicing data of CPE-109 with BPT-5204 and CPE-110 with BPT-5204, we found three common genes namely, *Os07g0406600* encoded to DDHD domain containing protein, *Os10g0442100* encoded to tRNA methyltransferase and *Os04g0675800* encoded to similar to H0103C06.10 proteins (**Table 2 and 4**), generated more than two transcripts *via* alternative splicing, determining its crucial role in complete panicle exsertion. Further, evaluating the data of these three differentially genes, we found DDHD domain containing protein (Os07g0406600) upregulated in both CPE-109

44 ★ Journal of Rice Research 2024, Vol 17, No. 1



 $(\log_2 FC=+1.69)$  and CPE-110  $(\log_2 FC=+1.79)$  while similar to H0103C06.10 protein (*Os04g0675800*) was down regulated in both CPE-109  $(\log_2 FC=-0.80)$  and CPE-110  $(\log_2 FC=-0.64)$ . The gene *Os10g0442100* revealed genotype dependent expression response, it was downregulated in CPE-109  $(\log_2 FC=-0.24)$  while upregulated in CPE-110  $(\log_2 FC=+0.89)$ . In rice, Dong *et al.*, (2012) reported alternatively spliced genes encoding to SR proteins (critical regulators of Zn, Mn, and P nutrition) regulates P uptake and remobilization between leaves and shoots of rice. Thus, in our study, alternatively spliced genes, *Os07g0406600* (DDHD domain containing protein), and *Os04g0675800* (similar to H0103C06.10 proteins) determining its crucial role in complete panicle exsertion.

Alternative splicing has been thoroughly studied in rice for various traits. Yu et al., 2018 studied grain size related parameters and executed characterization of a QTL for grain length OsLG3b, encoding a MADS-box transcription factor 1 (OsMADS1). Candidate gene association revealed six SNPs in OsLG3b region responsible for AS and associated with the levels of gene expression during panicle and seed development. Lui et al., 2022 identified that AS is involved in grain size 3 GS3 isoforms. GS3.1 accounting for 50% total transcripts encodes the fulllength protein and GS3.2, 40% of total transcripts, generate truncated proteins due to a 14 bp intronic sequence retention. Grain size is observed to be decreased in overexpressed lines for GS3.1 but in GS3.2, no significant effect was observed. Also, due to the competitive binding to intermediate gene, GS3.2 disrupts GS3.1 signaling. So, it is evident that AS has regulatory role for maintaining the transcripts spatiotemporally. Deep rooting, a crucial parameter for nutrient use efficiency for climate resilience in rice has been studied for AS regulation through RNAseq. The Intron Retention (IR) in OsPIN1 contributes to increased root depth in response to drought stress by altering the polar transport of auxin (Wei et al.,

2020). Additionally, AS in the 3' untranslated region (UTR) of Rice Nutrition Response and Root Growth (NRR) pre-mRNA modifies gene expression in roots during macronutrient deficiency, thereby influencing root architecture (Zhang *et al.*, 2012). The variations in pre-mRNA splicing has been recently analyzed genome-wide in rice for salinity tolerance. Under the salt stress conditions, two candidate genes with splice variants, *OsNUC1* and *OsRAD23* exhibited differences between the variants for shoot growth in rice (Yu *et al.*, 2021).

In our study, first time we have reported the role of AS in panicle for CPE. We report highly differential expressed alternatively spliced variants commonly expressed in two mutant lines exhibiting complete panicle exertion as compared to BPT-5204. These genes may be involved in the regulation or molecular mechanism of CPE. The results can be further through confirmed gene expression studies. Accordingly, the differentially expressed AS isoforms can be associated with CPE by using functional characterization techniques like overexpression editing. Additionally, functional or genome characterization efforts can be complemented by downstream analyses, including transcriptomic and proteomic profiling, to unravel the molecular pathways and networks influenced by the identified AS isoforms. These comprehensive analyses will provide a holistic understanding of the regulatory mechanisms underlying complete panicle exertion and the intricate interplay between alternative splicing and gene expression in this context.

#### References

Barbadikar KM, Bosamia TC, Moin M and Sheshu Madhav M. 2024. Assembly, Annotation and Visualization of NGS Data. In: Anjoy P, Kumar K, Chandra G, Gaikwad K. (eds) Genomics Data Analysis for Crop Improvement. Springer Protocols Handbooks. Springer, Singapore. https://doi.org/10.1007/978-981-99-6913-5\_3.

Journal of Rice Research 2024, Vol 17, No. 1 ★ 45



- Campbell MA, Haas BJ, Hamilton JP, Mount SM and Buell CR. 2006. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. *BMC genomics*, 7: 327. https://doi.org/10.1186/1471-2164-7-327.
- Chen S, Zhou Y, Chen Y and Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor, *Bioinformatics*, 34(17): i884–i890. https://doi.org/10.1093/bioinforma tics /bty560.
- Dong C, He F, Berkowitz O, Liu J, Cao P, Tang M, Shi H, Wang W, Li Q, Shen Z, Whelan J and Zheng L. 2018. Alternative splicing plays a critical role in maintaining mineral nutrient homeostasis in rice (*Oryza sativa*). *The Plant Cell*, 30(10): 2267-2285. https://doi.org/10.1105/tpc.18.00051.
- Duan YL, Guan HZ, Zhuo M, Chen ZW, Li WT, Pan RS, Mao DM, Zhou YC and Wu WR. 2012.
  Genetic analysis and mapping of an enclosed panicle mutant locus esp1 in rice (*Oryza* sativa L.). Journal of Integrative Agriculture, 11(12):1933–1939. https://doi.org/10.1016/ S2095-3119(12)60449-3.
- Ganie SA and Reddy ASN. 2021. Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. *Biology (bisol)*, 10(4):309. https://doi.org/10.3390/biology10040309.
- Guan HZ, Duan YL, Liu HQ, Cheng ZW, Zhuo M, Zhuang LJ, Qi WM, Pan RS, Mao DM, Zhou YC, Wang F and Wu WR. 2011. Genetic analysis and fine mapping of an enclosed panicle mutant esp2 in rice (*Oryza sativa* L.). *Chinese Science Bulletin*, 56(14):1476–1480. https://doi.org/10.1007/s11434-011-4552-9.
- Hake AA, Ballichatla S, Barbadikar KM, Magar N,Dutta S, Gokulan CG, Awalellu K, Patel HK,Sonti RV, Phule AS, Varma EP, Ayeella PG,Vamshi P, Sundaram RM and Maganti SM.

2023. Combined strategy employing MutMap and RNA-seq reveals genomic regions and genes associated with complete panicle exsertion in rice. *Molecular Breeding*, 43(9):69-88. https://doi.org/10.1007/s11032-023-01412-1.

- Katz Y, Wang ET, Silterra J, Schwartz S, Wong B, Thorvaldsdottir H, Robinson JT, Mesirov JP, Airoldi EM and Burge CB. 2015. Quantitative visualization of alternative exon expression from RNA-seq data. *Bioinformatics*, 31(14): 2400-2402. https://doi.org/10.1093/bioinformatics/ btv034.
- Kim D, Paggi JM, Park C, Bennet C and Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology*, 37:907-915. https://doi. org/10.1038/s41587-019-0201-4.
- Liu L, Zhou Y, Mao F, Gu Y, Tang Z, Xin Y, Liu F, Tang T, Gao H and Zhao X. 2022. Fine-Tuning of the Grain Size by Alternative Splicing of GS3 in Rice. *Rice*, 15(1): 1-4. https://doi.org/10.1186/ s12284-022-00549-5.
- Phule AS, Barbadikar KM, Maganti SM, Seguttuvel P, Subrahmanyam D, Babu MP and Kumar PA. 2019. RNA-seq reveals the involvement of key genes for aerobic adaptation in rice. *Scientific Reports*, 9(1), 5235. https://doi.org/10.1038/ s41598-019-41703-2.
- Potupureddi G, Balija V, Ballichatla S, Gokulan CG, Awalellu K, Lekkala S, Jallipalli K, Gayathri MG, Mohammad E, Arutla S, Burka R, Laha GS, Padmakumari AP, Subba Rao LV, Sundaram RM, Viraktamath BC, Ravindra Babu V, Kranti B, Raju M, Patel HK, Sonti RV and Sheshu Madhav M. 2021. Mutation resource of Samba Mahsuri revealed the presence of high extent of variations among key traits for rice improvement. *Plos one*, 16(10), https://doi.org/10.1371/journal.pone.0258816.



- Shen S, Park JW, Lu Z, Lin L, Henry MD, Wu YN, Zhou Q and Xing Y 2014. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. *Proceeding of National Academy of Sciences*, 111(51): E5593-E5601. https://doi.org/10.1073/pnas.1419161111.
- Syed NH, Kalyna M, Marquez Y, Barta A and Brown JW. 2012. Alternative splicing in plants-coming of age. *Trends in plant science*. 17(10): 616-623. https://doi.org/10.1016/j.tplants.2012.06.001.
- Wei H, Lou Q, Xu K, Zhou L, Chen S, Chen L and Luo L. 2020. Pattern of alternative splicing different associated with difference in rooting depth in rice. *Plant Soil*, 449:233-248. https://doi.org/10.1007/ s11104-020-04451-1.
- Yu H, Du Q, Campbell M, Yu B, Walia H and Zhang C. 2021. Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. *New Phytologist*, 230(3): 1273-1287. https://doi.org/10.11 11/nph.17189.

- Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Abdul Rehman RM, Li J, Zhang H and Li Z. 2018. Alternative splicing of *OsLG3b* controls grain length and yield in japonica rice. *Plant Biotechnology Journal*, 16(9): 1667-1678. https://doi.org/10.1111/pbi.12903.
- Zhang YM, Yan YS, Wang LN, Yang K, Xiao N, Liu YF, Fu YP, Sun ZX, Fang RX and Chen XY. 2012.
  A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth. *Molecular Plant*, 5(1): 63-72. https://doi.org/10.1093/mp/ssr066.