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Abstract
Climate change poses a serious threat to global food security, with rice cultivation emerging as both a 
contributor to and a victim of this crisis. This review article explores the mechanisms behind greenhouse 
gas emissions from rice fields, focusing on microbial processes such as methanogenesis and denitrification, 
and highlights the mitigation strategies that balance productivity with environmental sustainability. The 
study emphasizes that water and fertilizer management are pivotal levers for reducing emissions. Techniques 
like Alternate Wetting and Drying, mid-season drainage, and controlled irrigation have shown promise in 
cutting methane emissions by up to 90%, though they may increase nitrous oxide emissions, necessitating 
careful trade-off management. Fertilizer innovations including enhanced efficiency fertilizers, nitrification 
inhibitors, and nano fertilizers offer further avenues for emission reduction while improving nitrogen use 
efficiency. Beyond agronomic practices, the selection of rice cultivars such as low-emission, high-yielding, 
and genetically engineered varieties demonstrate significant potential in reducing methane and nitrous oxide 
emissions. Additionally, rice straw management through composting, biochar production, and avoiding 
open-field burning can drastically lower the carbon footprint of rice farming. Microbial innovations, such 
as inoculating rice with methane-oxidizing bacteria or using plant microbial fuel cells, further enhance 
mitigation efforts. Despite these advances, challenges remain in scaling these solutions due to socio-economic 
constraints, regional variability and farmer adoption barriers. 
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Introduction
The phenomenon of climate change (CC) presents 
a substantial risk, causing rise in global average 
temperature and resultant climate catastrophes 
worldwide (Jackson et al., 2020), chiefly attributable 
to the augmented atmospheric concentrations of 
both natural and anthropogenic greenhouse gases 
(GHGs) including water vapour, ozone (O3), carbon 
dioxide (CO2), methane (CH4), nitrous oxide (N2O), 
and fluorinated gases, which collectively modulate 
atmospheric radiative forcing and influence Earth’s 
temperature by preventing infrared radiation from 

escaping into space (Kumar, 2024; Patterson, 
2012). The Sixth Assessment Report (AR6) of the 
Intergovernmental Panel on Climate Change (IPCC) 
reiterated that the rapid warming of the climate system 
is indisputable, primarily driven by anthropogenic 
GHG emissions (IPCC, 2023) reaching a record high 
in 2023, the warmest year on record, with a global 
average temperature of 1.45°C (±0.12°C) above pre-
industrial levels, surpassing the previous record by 
0.17°C (Sandford et al., 2024; WMO, 2023). From 
2011 to 2020, the global temperature was 1.1°C higher 
than the pre-industrial period of 1850–1900. Boosted 
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by the El Nino phenomenon, the period spanning 
from February 2023 to January 2024 marked the first 
instance where the global average temperature surged 
0.64°C above the 1991–2020 average and 1.52°C 
above the 1850-1900 average (Copernicus Climate 
Change Service, 2024). Moreover, the mean surface 
temperatures are anticipated to increase by 2.2°C to 
3.5°C by mid-century without effective measures 
to mitigate global warming (IPCC, 2023). The 
consequences of CC, such as rising temperatures, heat 
waves, sea level rise, altered precipitation, prolonged 
droughts, severe storms, and poor air quality, are 
both observed and anticipated shortly (Sonwani and 
Saxena, 2022). Projections indicate that the adverse 
effects of CC will continue to worsen (Dhillon and 
Sohu, 2024). 

Agriculture is the pivotal economic sector accountable 
for ensuring both food security and nutritional 
adequacy. Nevertheless, it exerts direct or indirect 
influence on the phenomenon of global climate 
alteration through the release of three of the major 
six GHGs viz., CO2, CH4, and N2O (Panchasara et al., 
2021), whereby agricultural soils serve as both source 
and sink of these gases across nearly all terrestrial 
ecosystems (Basheer et al., 2024). These gases are 
integral to regulating the radiative balance by their 
capacity to absorb and emit specific infrared radiation 
reflecting from the terrestrial surface. Apart from 
being a dynamic GHG, CH4 influences atmospheric 
oxidation by regulating tropospheric hydroxyl radical 
levels (Holmes, 2018; Tian et al., 2020), whereas 
N2O contributes to the stratospheric ozone depletion 
(Ravishankara et al., 2009). Likewise, CO2 also 
largely contributes to global CC, accounting for 
over half of the total greenhouse effect (Liu et al., 
2013). Additionally, CC is concurrently engendering 
significant challenges for global agricultural 
productivity, resulting in elevated food prices (Fahad 
et al., 2022). Agriculture sector bears the primary 
responsibility for non-CO2 emissions, notably CH4 
and N2O, with their respective global warming 
potentials (GWPs) being 28 and 273 times greater than 

that of CO2, over a century (IPCC, 2023). Agriculture 
accounts for approximately 50% and 60% of global 
CH4 and N2O emissions, respectively, accounting for 
approximately 10% to 12% of total anthropogenic 
GHG emissions (Xu et al., 2016). The emanation of 
CH4 from this sector is predominantly from activities 
such as livestock husbandry (enteric fermentation and 
manure handling) and the cultivation of rice. N2O is 
predominantly released as a result of the utilization of 
nitrogenous fertilizers on agricultural lands. By 2023, 
key GHG concentrations have risen significantly from 
pre-industrial levels, with CO2 increasing by about 
50% from 280 to 420 ppm, CH4 by 176% from 700 
to 1934 ppb, and N2O by 25% from 270 to 336.9 ppb 
(EEA, 2025), corroborating the World Meteorological 
Organization’s Greenhouse Gas Bulletin which 
recorded CO2 at 415.7 ppm, CH4 at 1908 ppb, and 
N2O at 334.0 ppb in 2021, indicating 149%, 262%, 
and 124% of pre-industrial levels, respectively.

Rice production is identified as a crucial sector of 
global agriculture that serves as the primary staple 
sustenance for over half the global population 
particularly concentrated in regions such as Asia, Sub-
Saharan Africa, and South America, with cultivation 
spanning approximately 11% of the world’s total 
arable land (USDA, 2023). In the 2023 crop year, 
global rice cultivation spanned approximately 168 
million hectares, with India and China as the foremost 
producers; India’s paddy rice output reached over 
206.7 million metric tons (MMT), while China’s 
slightly surpassed 206 MMT, culminating in a 
total rice production of 537.72 MMT for the 2024 
marketing year (Shahbandeh, 2025). Projections 
indicate an anticipated rise in global rice consumption 
from 480 million tons in 2014 to close to 550 million 
tons by 2030 (Yuan et al., 2021). However, the carbon 
footprint of rice production is substantial, with global 
emissions of 2430 kg CO2 eq per megagram of grain 
in 2020 projected to rise due to rising consumption 
despite of burgeoning population. This makes rice 
a major contributor to global warming, particularly 
in Southeast, South, and East Asia (Abdo et al., 
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2024). Conversely, rice production is also severely 
impacted by CC, with forecasts suggesting a potential 
51% reduction in cultivation due to factors such as 
altered rainfall patterns, increased temperatures, 
and extreme weather events (Hussain et al., 2020). 
Rising temperatures devastate rice yields, with every 
1°C increase in minimum temperature causing  7% 
to 10% drop during critical growth phases such as 
reproduction (Fahad et al., 2019; Peng et al., 2004; 
Saxena and Kumar, 2022; Sanadya et al., 2024; 
Umarani et al., 2020) with 3.2 % drop in rice yields 
(Zhao et al., 2017). Therefore, rice cultivation is 
a major concern to the scientific community and 
a considerable threat to sustainable agriculture. 
Furthermore, the attainment of the climate objective 
to confine global temperature rise to well below 2°C 
(3.6°F) with an ideal target of 1.5°C (2.7°F) above pre-
industrial levels as highlighted in the Paris Climate 
Agreement (UNFCC, 2015) necessitates substantial 
reductions in GHGs across all agricultural sectors by 
2030, with specific emphasis on the rice sector. This 
requires a “win-win” rice production strategy which 
can boost yield while reducing emissions.

Mechanism of greenhouse gas emissions from rice 
fields

Agricultural soils assume an imperative function 
in the release of GHGs, specifically CH4, N2O, and 
CO2 through intricate interactions involving soil 
flora and microorganisms.  In rice-cropping systems, 
direct emissions include CH4 from inundated paddy 
fields, N2O from nitrogen-based fertilizer application, 
and CO2 emissions from plant rhizosphere and soil 
microbial respiration. Whereas, indirect emissions 
result from rice production, storage, consumption, 
waste chains and transportation of agricultural input 
production such as human inputs, fertilizers, fuel 
consumption, and pest and weed control (Ji et al., 
2024). Rice cultivation is the third most significant 
contributor to non CO2 GHG emissions within the 
agricultural domain, trailing behind livestock and 
various forms of croplands on a global scale (Trang et 
al., 2022). The traditional practice of paddy farming 

with inundated condition, wherein organic matter 
undergoes anoxic decomposition release of CH4 by the 
process of methanogenesis, whereas, in aerobic soil, 
decomposition occurs in the presence of oxygen with 
the release of CO2 (Gupta et al., 2021). N2O emissions 
arise from microbial N transformations through the 
processes of soil nitrification and denitrification, both 
of which can co-exist in flooded rice soils, and also 
by the heterotrophic reduction of nitrate-nitrogen to 
ammonium (Bhattacharyya et al., 2013; Kuypers et 
al., 2018). 

Methanogenesis, methanotrophy and methane 
emission from rice paddies

CH4 is the second most crucial GHG after CO2 in terms 
of GWP, predominantly released from inundated 
rice paddies (Conrad, 2007), characterized by high 
radiative efficiency with shorter lifespan than CO2. 
It exhibits high and moderate GWPs, respectively, 
over short and longer timescales (Balcombe et al., 
2018). Its atmospheric concentration has surged 
from preindustrial benchmark of 722 ppb (Wang et 
al., 2017), contributing almost one quarter of the 
cumulative radiative forcings for CO2, CH4, and N2O 
combined since 1750 (Etminan et al., 2016), while 
global CH4 emissions have consistently risen (Lamb 
et al., 2021). With rice cultivation and livestock 
contributing to a current concentration of 1,895 ppb 
(Feng et al., 2023), annual global emissions from rice 
fields were estimated at 27 ± 6 Tg, and predictions 
indicate persistent or increasing emissions in the future 
(Wang et al., 2023). Christensen (2024) reported that 
wetland emissions, especially CH4 concentrations, are 
rising faster than ever in the atmosphere. According to 
Maraseni et al., (2018), rice cultivation is responsible 
for over 10 % of global CH4 emissions, particularly in 
Southeast Asia, one of the world’s major rice bowls, 
where it is accountable for 25% to 33 % of the region’s 
emissions (Umali-Deininger, 2022).  Linquist et al., 
(2012b) reported the GWP of rice cultivation to be 
2.7 and 5.7 times greater than that of maize and wheat 
systems, respectively, with CH4 specifically accounting 
for over 90% of rice system’s GWP. Recent reports 
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have shown that the highest CH4 emissions occur 
from the tillering to flowering stage in rice (Islam et 
al., 2022b; Mallareddy et al., 2023). Emission of CH4 
from paddy soils largely depends on the production 
and oxidation rates, mainly governed by methanogen 
and methanotroph population dynamics in the system, 
ultimately determining the net CH4 emission from the 
rice fields (Fazli et al., 2013).

Methanogenesis or CH4 production, which necessitates 
anoxic conditions and low redox potential (Eh < −150 
mV), is facilitated by anaerobic obligate bacteriae/
archae referred to as methanogens (Penning and 
Conrad, 2007). They use fermentation products from 
microbial decomposition of plant matter and root 
exudates; with three biochemical pathways, namely 
hydrogenotrophic, acetoclastic, and methylotrophic, 
primarily producing CH4 from acetate (Malyan et 
al., 2016a). The CH4 produced is either released 
into the atmosphere through three mechanisms, viz., 
(i) diffusion loss of dissolved CH4 across the water-
air and soil-water interfaces, (ii) ebullition loss by 
the release of gas bubbles, and (iii) Plant-mediated 
transport (PMT) - transport into the roots by diffusion 
and conversion to CH4 gas within the aerenchyma and 
cortex of rice plants, followed by concurrent release 
to the atmosphere through stomata; or, it may undergo 
methanotrophy. In the rice-growing season, nearly 80 
to 90% CH4 produced in the soil is released by PMT, 
facilitated by specialized aerenchyma structures that 
provide oxygen for respiration and CH4 for transport 
(Xie and Li, 2002). Additionally, it is observed 
that 90% of the CH4 produced in rice soils escapes 
primarily through micropores in the leaf sheath of the 
lower leaf position, whereas the leaf blade stomata 
serve as the secondary site of emission (Islam et al., 
2020b). Furthermore, CH4 may undergo biological 
oxidation by aerobic and anaerobic methanotrophs, 
referred to as methanotrophy (Conrad, 2007; Nazaries 
et al., 2013), wherein aerobic oxidation transforms 
CH4 to CO2 by sequential enzyme activity, utilizing 
oxygen as an electron acceptor, mediated by CH4 
monooxygenases that can also oxidize substrates such 

as acetate, ethanol, malate, succinate, and pyruvate. On 
the other hand, anaerobic methanotrophy or sulphate-
dependent CH4 oxidation is accomplished through 
physical combination of anaerobic methanotrophic 
archaea and sulphate-reducing bacteria using sulphate 
as an electron acceptor, facilitated by metals like 
iron and manganese (Chowdhary and Dick 2013; 
Nazaries et al., 2013; Malyan et al., 2016a). However, 
methanotrophy is limited by rapid ebullition, which 
reduces the likelihood of CH4 oxidation.

Nitrous oxide production and emission from rice 
fields

N2O is a leading anthropogenic GHG and plays a 
key role in stratospheric ozone depletion. Agriculture 
sector is the largest source of N2O among all the 
anthropogenic contributors (Reay et al., 2012), 
particularly due to the significant share of water and 
N-based fertilizers usage in rice cultivation (Zhao et 
al., 2019; Jiang et al., 2019). Hence, the likelihood 
of increased global N2O emissions from rice fields 
in the future is markedly elevated (Ussiri and Lal, 
2012). N2O is generated through microbial nitrogen 
transformations in soils, which has been related to 
two biological processes, viz., (i) Nitrification of 
ammonium (NH4

+) under aerobic conditions leading 
to the loss of N as N2O, and (ii) Denitrification - the 
reduction of NO3

- to N2O and, ultimately, N2 gas under 
anaerobic conditions. It is produced in rice soils after 
intermittent flooding during the transition from wet to 
dry soil conditions.  N2O emissions from traditional 
flooded paddy fields, with 100 % water-filled pore 
space are minimal, because nitrification cannot occur 
due to anaerobic conditions, which also precludes 
denitrification due to the lack of  NO3

- in the soil (Qin 
et al., 2010), as the NO3

- gets reduced to NH4
+ under 

such anaerobic condition. When N-based fertilizer is 
applied to the paddy fields, within the oxidized layer 
at the water-soil interface, the NH4

+-N gets nitrified 
to NO3

-, facilitated by ammonia oxidising bacteria 
(AOB) and archaea (AOA), with the latter being 
predominantly accountable for the process (Ahmed 
et al., 2023). The NO3

- thus formed in the oxidized 
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layer moves to the reduced layer, where anaerobic 
bacteria denitrify it, producing N2O as an intermediary 
compound (Van Spanning et al., 2005; Xing et al., 
2002; Xing et al., 2009). As N2O is water-soluble, in 
flooded soils, rice roots absorb and transmit it through 
leaves via the transpiration stream, while it mainly 
diffuses to the soil surfaces in the absence of flood 
water.

Carbon dioxide production and emissions from 
rice fields

Rice paddies emit less CO2 compared to CH4 and 
N2O, stemming from biotic and abiotic processes, 
but are often overlooked in studies due to maintained 
soil organic matter (SOM). The generation and 
release of CO2 are contingent upon soil dynamics, 
prevailing environmental conditions, and the 
SOM characteristics. Microbial decomposition 
of reintroduced organic matter drives soil carbon 
mineralization, making it a key process in the release 
of CO₂ from soils (Hossain et al., 2017; Mohanty et 
al., 2017; Rahman, 2013). Anaerobic condition in 
inundated paddies limits carbon oxidation, thereby 
accumulates soil organic carbon and results in lower 
CO2 emissions while promoting methanogenesis. At 
the surface level of the soil, CO2 is liberated through 
the respiration of roots alongside various forms of 
flora and fauna (Hossain et al., 2017). Observations 
indicate that CO2 flux in rice paddies vary throughout 
the growth cycle, peaking during flowering due to 
heightened photosynthesis, while nocturnal emissions 
are primarily respiration-driven (Wang et al., 2024). 
Ebullition contributes 13-35 % of CO2, modulated by 
the content of crop residue and litter, root activities, 
and microbial processes that transform the soil 
carbon reservoirs into CO2 through the action of soil 
microorganisms. Additionally, practices like urea 
application, residue incineration particularly the in-
field burning of rice straw, and tillage methodologies 
enhances CO2 emissions in rice cultivation (Ngo et 
al., 2018; Rahman et al., 2017). Urea fertilizer in the 
presence of water and urease enzyme gets converted to 
ammonium (NH4

+), hydroxide (OH−) and bicarbonate 

(HCO3), with the latter ultimately evolving into CO2 
and water (Hussain et al., 2015). However, albeit low 
efficiency of CO2 assimilation due to photorespiration, 
rising atmospheric CO2 concentrations stimulate 
photosynthesis and productivity of C3 plants such as 
rice, a phenomenon known as the CO2 fertilization 
effect. 

Strategies to prevent rice from warming the 
planet

Field studies have shown that the changes in crop 
genetics and selecting suitable cultivar, tillage 
practices, cropping regime, proper management of 
irrigation, fertilizer use, use of nitrification inhibitors, 
crop residue management etc., have a significant 
influence on GHG emissions from rice (Gupta et al., 
2021; Yadav et al., 2024; Wassmann et al., 2000), 
which in turn influence the biogeochemical processes 
of C and N in the soil (Islam et al., 2020a). Alleviating 
GHGs emission from agriculture can be achieved 
by sequestering C in soil and reducing emissions of 
CH4 and N2O from soil through changes in land-use 
management (Pathak et al., 2014). Such options are 
important not solely for global warming mitigation but 
also for improving soil health and fertility, along with 
optimal yield and curtailing emissions; essentially 
a win-win sustainable scenario. As major emission-
curtailing factors are water regimes and fertilizer 
management practices, implementing targeted agro-
technologies and management practices is crucial for 
mitigating GHG emissions in rice cultivation. 

(A)	Reducing GHG emissions while saving water

1.	 Irrigation and drainage management

Rice, a water-guzzling crop cultivated mostly 
through suboptimal irrigation methods, suffers from 
low water efficiency and significant environmental 
repercussions. Research indicates that water stress, 
especially, drought adversely affects rice productivity, 
with yield reductions ranging from 21% to 52% across 
various cultivars under stress conditions (Hussain 
et al., 2022). Paddy fields exhibit a comparatively 
lower level of CO2 emissions in relation to CH4 and 
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N2O, attributable to the suboptimal conditions for C 
oxidation of inundated paddy soils. The process of 
ebullition accounts for approximately 13–35% of 
CO2 and 94–97% of CH4 emissions (Hussain et al., 
2015). Rice paddies predominantly contribute to 
CH4 emissions; however, under flooded conditions, 
they also emit N2O, although to a lesser extent, due 
to the denitrification process favoured in anaerobic 
environment (Pittelkow et al., 2013). On the other 
hand, N2O emissions experience a substantial 
increase under conditions of continuous inundation 
and cycles of drainage which enhances nitrification. 
Consequently, rice cultivation presents a notable 
trade-off between CH4 and N2O emissions, with 
the generation of both the gases being significantly 
affected by the availability of water within the root 
zone of the crop. Nonetheless, rice production is 
currently confronted with considerable challenges, 
including the scarcity of irrigation water, labour 
shortages, and high GHG emissions from traditional 
continuous flooding (CF) of rice fields, sometimes 
over 90% CH4 emissions than non-flooded practices 
(Sanchis et al., 2012). 

The irrigation patterns employed throughout the rice 
cultivation process can exert a profound influence on 
GHG emissions due to their regulation of soil microbial 
activity and the availability of substrates for non CO2 
emissions. Variations in soil moisture resulting from 
irrigation directly affect soil redox potential, which 
can significantly regulate the rates of release and 
consumption of GHGs (Wang et al., 2017). Numerous 
studies have underscored the efficacy of diverse water 
management strategies including alternate wetting 
and drying (AWD), controlled irrigation (CI), mid-
season drainage (MSD) in diminishing CH4 and N2O 
emissions originating from rice fields. In Eastern 
India, hydrologic variability exerts a considerable 
influence on GHG emissions, with variables such as 
the duration of flooding and interactions with crop 
residues and nitrogen management serving as pivotal 
determinants (Arenas-Calle et al., 2024).

The AWD irrigation system, developed by the 
International Rice Research Institute (IRRI) represents 

a promising, water-saving, and economically viable 
environmentally benign technique that entails 
intermittent drying and re-flooding of rice fields. 
It effectively reduces GHG emissions by 45-90%, 
enhances water utilization and sustains grain output 
by promoting non-flooded days throughout the crop 
cycle (Das et al., 2016; Ogawa et al., 2022). Global 
freshwater scarcity, labour shortages, and high GHG 
emissions from traditional continuous flooding (CF) 
of rice fields are driving the adoption of the AWD 
irrigation system (Lampayan et al., 2015). Conversely, 
AWD irrigation fosters an ideal environment for 
nitrification and ensuing denitrification upon re-
hydration, which may emit N2O gas (Jiang et al., 
2019). Consequently, a trade-off relationship between 
CH4 and N2O emissions has been identified through 
water management (Islam et al., 2020b; Islam et al., 
2022a). While AWD decreases CH2 emissions by 
up to 73% in certain conditions, with sustained rice 
yields comparable to CF systems (Prangbang et al., 
2020; Sander et al., 2020) by enhanced diffusion of 
atmospheric oxygen into soil, it may also elevate N2O 
emissions by 44% (Zhao et al., 2024) due to increased 
nitrification of NH4

+ during the dry episode and the 
subsequent denitrification of NO3

- during re-wetting of 
dry soil; however, it still reduces total GHG emissions 
from rice fields mainly due to reduced CH4 emissions. 
Furthermore, lysimeter studies by Phungern et al., 
(2023) reported reduction of 55.6% for lowland and 
59.6% for upland cultivars in GWP for AWD over 
CF practices, despite an increase in N2O emissions 
attributable to higher dissolved oxygen levels.  AWD 
can consistently reduce the amount of soil available 
P (Adhikary et al., 2023), thereby boosts arbuscular 
mycorrhizal fungi (AMF) that help plants absorb 
nitrogen, leaving less for N2O production and lowering 
emissions (Storer et al., 2018). A thorough investigation 
by Aung et al., (2018) further suggested that early-
season AWD could effectively lower GHG emissions 
in contexts where the full-scale implementation of 
AWD is impractical, achieving CH4 reductions up 
to 51.5% in the dry season and 20.1% in the wet 
season. However, full-AWD practices resulted in a 
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52.8% to 61.4% reduction compared to CI (controlled 
irrigation), significantly decreasing CH4 emissions 
in the dry season and also reducing early season 
emissions in the following wet season. AWD and CI 
have demonstrated significant potential for mitigating 
CH4 emissions by approximately 51.6% to 60.5% and 
reduce nutrient losses while maintaining rice yields 
(Lee et al., 2023b; Zhao et al., 2024). Additionally, 
CI and AWD practices effectively decrease N losses, 
particularly when soil desaturation occurs before 
re-irrigation, which is crucial for minimizing NO3

- 
leaching (Gbedourorou et al., 2024).

MSD (mid-season drainage) in flooded rice systems 
slashes seasonal CH₄ emissions by an impressive 
20-77% averaging at 52% reduction, while the 
accompanying rise in N₂O emissions contributes 
only 3% to overall GWP (Perry et al., 2024). In 
Japan, MSD is widely employed to augment rice 
yields and conserve water, and its application in areas 
characterized by high CH4 emitting soils can lead 
to a significant reduction in national CH4 emission 
estimates (Leon et al., 2017). Liu et al., (2019a), 
in a meta-analysis focused on MSD, reported 47% 
reductions in GWP. A global meta-analysis by Wu et 
al., (2022) revealed that drainage in rice cultivation 
reduced CH4 emissions by 57.8%, increased N2O 
emissions by 149.9%, and CO2 emissions by 27.7%, 
with negligible impact on yield (+0.3%), ultimately 
decreasing the GWP index by 57.7%. 

Furthermore, studies indicate that while CF generally 
leads to lower N2O emissions, the implementation 
of intermittent flooding can paradoxically increase 
N2O emissions significantly, sometimes up to three 
times higher than those from CF fields (Akiyama et 
al., 2005; Kritee et al., 2018). The adoption of CI 
methods, such as controlled intermittent flooding 
(CIF), helps reduce emissions while enhancing 
water-use-efficiency (Rajasekar and Selvi, 2022). 
Intermittent wetting and drying (IWD) can lower 
CH4 emissions without reducing yields, as observed 
in the Brahmaputra valley (Rajbonshi et al., 2024). 
Additionally, the management of fallow periods 

between rice crops, including practices such as soil 
drying and aerobic tillage, can impact CH4 and N2O 
emissions, with soil drying treatments resulting in 
elevated N2O emissions due to the accumulation of 
NO3

- (Sander et al., 2018). Collectively, these studies 
emphasize the critical importance of tailored water 
management practices that take into account local 
hydrologic conditions, soil types, and socio-economic 
factors to effectively mitigate GHG emissions in rice 
cultivation. 

2.	 Alternate rice production systems

The conventional wetland rice cultivation methods 
of puddled transplanted rice (PTR) are both water-
intensive and labour-demanding, necessitating the 
development of water-efficient rice production 
systems that enhance water productivity in light of 
the impending water crisis.  Soil puddling induces 
oxygen-deficient conditions that intensify GHG 
release and nitrogen depletion, ultimately amplifying 
the environmental footprint of rice cultivation. 
The choice of rice establishment method, such as 
transplanted rice versus direct seeding, also affects 
emissions, with transplanted rice generally producing 
higher GHG emissions across various fertilizer 
methods (Tin et al., 2022). However, Moe et al., 
(2024) found lower GHG emissions in transplanting 
compared to broadcasting method, without reducing 
grain yield. Advanced resource conservation 
methodologies such as direct seeded rice (DSR), 
system of rice intensification (SRI), and aerobic rice 
present opportunities to optimize water utilization 
with reduced environmental footprint and enhanced 
productivity (Mallareddy et al., 2023; Sultan et al., 
2024). 

DSR is increasingly favoured over traditional PTR 
methods, offering benefits like reduced water use, 
lower labour costs, early crop maturity, and decreased 
GHG outputs, particularly CH4 and N2O, making it 
environmentally and economically appealing (Mishra 
et al., 2023). The DSR technique involves sowing pre-
germinated seeds in puddled soil (wet-DSR), standing 
water (water seeding), or dry seeding on a prepared 
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seedbed (dry-DSR), while significantly lowering 
input needs, conserving 12–35% of water and labour, 
and curbing methane emissions by up to 90%. (Singh 
et al., 2024).

The SRI methodology, which integrates practices such 
as AWD, has been widely adopted and is recognized 
for its substantial reduction in CH4 emissions (Uphoff, 
2024) 885, with research suggesting a reduction of 
approximately 35-41% in GHG emissions per hectare 
relative to traditional methods, while, also enhancing 
yields by approximately 66%, further decreasing 
emissions per kilogram of rice produced and lowering 
production costs, making it a more attractive option 
for farmers (Dahlgreen and Parr, 2023; Dahlgreen and 
Parr, 2024). Additionally, SRI practices enhance soil 
C sequestration and lessen the reliance on chemical 
inputs, thereby contributing to environmental 
sustainability and CC mitigation (Hoang et al., 2021). 
The practice also reduced CH4 and CO2 emissions by 
59.8% and 20.1% compared to conventional practice, 
while emitting a small amount of N2O (up to 0.0002 
kg ha−1), which was not detected in conventional 
methods, and achieved greater grains output with 
lower seasonal GWP and greenhouse gas emission 
intensity (GHGI) when coupled with 90 kgNha−1 

(Mboyerwa et al., 2022).

Aerobic rice, which is cultivated in non-flooded, 
well-drained soils, not only significantly reduces 
water consumption and GHG emissions but also 
enhances water productivity compared to flooded 
rice, positioning it as a sustainable alternative to 
traditional methods, although challenges in achieving 
potential yields remain (George, 2018) Aerobic 
rice showed better GHG reduction, with CH₄ 
emissions nearly halved compared to flooded rice 
(Jinsy, 2014). Furthermore, a study by Ramesh and 
Rathika (2020) revealed that while transplanted rice 
exhibited higher CH4 emissions, aerobic and drip-
irrigated rice displayed markedly lower GHG outputs 
and improved water productivity.  The aerobic rice 
system demonstrated notable environmental benefits, 
reducing the carbon footprint of rice production by 

14.6 and 19.3% over shallow lowland rice and rice 
intensification systems, respectively (Dash et al., 
2023). 

In Vietnam the package of improved cultivation 
techniques known as “1 Must-do, 5 Reductions” 
(1M5R) integrating AWD alongside other advanced 
techniques can save up to 11 tons of CO2 equivalent per 
hectare annually compared to conventional farming. 
The approach promotes the use of certified seed and 
must achieve ‘5 reductions’ in seed rate, fertilizer rate 
(nitrogen), pesticide rate, water consumption through 
AWD irrigation, and post-harvest losses as a means to 
improve the overall sustainability of rice production 
(IRRI, 2024).

(B)	GHG mitigation through fertilizer management

The on-going challenge of improper and non-judicious 
fertilizer application in agriculture has elicited 
significant concern. Rice represented 15% of global 
fertilizer use among the top three cereals (maize, 
wheat, and rice), with cereals overall accounting for 
59% of nitrogen fertilizer consumption. Rice received 
approximately 16%, 13%, and 12% of the 59% N, 49 
% P2O5, and 39 % K2O used by the cereals, respectively 
(IFA, 2022). Nitrogen fertilization constitutes one 
of the strategies employed to improve crop yield 
and sustain soil fertility, though it significantly 
stimulates N2O, CH4 and CO2 emissions, contributing 
to enhanced global warming (Menegat et al., 2022). 
Methane fluxes are highly dependent on carbon 
availability, which is derived from the application of 
fertilizers, dead plant tissues, and organic exudates 
(Bhatia et al., 2005). Nitrogen fertilizer’s impact on 
CH4 emissions from rice fields is complex, influencing 
production, oxidation, and transport processes. It can 
either increase emissions by promoting rice growth 
and substrate C supply for methanogens or decrease 
emissions by enhancing CH4 oxidation by stimulating 
growth of methanotrophs (Chen et al., 2024). 
However, the net effect depends on nitrogen source 
and agronomic practices. Specifically, N fertilization 
enhances methanogen activity and accelerates organic 
matter decomposition, significantly increasing CH4 
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emissions in acidic soils. Furthermore, approximately 
three-quarters of N2O emissions from agricultural soils 
is from application of nitrogenous fertlizers, which 
enhances soil microbial activity, thus necessitating 
meticulous selection for effective mitigation strategies 
(Mohanty et al., 2017). Additionally, rice plants 
themselves may contribute to N2O emissions through 
a proposed mitochondrial pathway under hypoxic 
conditions, suggesting dual sources of N2O in paddies 
i.e., soil microorganisms and the plants (Timilsina 
et al., 2020). However, research indicates that only 
30-40% of the applied N is effectively absorbed by 
rice plants, while 60-70% is lost through processes 
such as ammonia volatilization, denitrification, 
surface runoff and NO3

- leaching (Galloway et al., 
2003), necessitating improved nitrogen management 
strategies to enhance nitrogen use efficiency and 
eventually alleviate GHG emissions.  

The effective management of fertilizers has a 
substantial effect on the reduction of the emissions of 
N2O and CH4, as it is largely affected by the type, rate, 
mode, timing, and method of fertilizer-N application. 
Enhancing nitrogen efficiency potentially mitigates 
N2O emissions and residual NO3

− in soil, while the 
4R nutrient management approach viz., right source, 
right time, right rate, and right placement successfully 
alleviates GHG emissions. Furthermore, promising 
results have been observed from sophisticated fertilizer 
management strategies designed to diminish GHG 
emissions from rice paddies, including the utilization 
of enhanced efficiency nitrogen fertilizers (EENFs), 
plant need-based application using leaf colour chart 
(LCC), precise incorporation into soil, tailored 
application rates and timings, and the avoidance of 
excessive use. 

The type and amount of fertilizer material used can 
significantly affect soil microbial activity, thereby 
altering CH4 and N2O emissions. Researchers 
concluded after a meta-analysis of 155 studies that N 
fertilizer enhances CH4 emissions, and the stimulatory 
effect of urea is more pronounced (2–3 times higher) 
than that of ammonium sulphate (AMS) (Banger et al., 

2012). Elevated levels of NH4
+N in soil can significantly 

curb overall CH4 emissions (Hussain et al., 2015). 
Urea application enhances the soil NH4

+N, and due 
to the structural parallels between CH4 and NH4

+ ion 
(Schimel, 2000), methanotrophs preferentially bind 
to NH4

+; therefore limits methanotrophy, ultimately 
leading to increased CH4 emission from soil (Malyan 
et al., 2016a). On the other hand, AMS suppressed 
methanogens in rice soils. AMS application has 
been demonstrated to lower CH4 emissions by 42% 
to 60% through the promotion of methanotrophic 
bacteria that oxidize CH4. This is because the sulphate  
(SO4

-) ions present in AMS can inhibit CH4 production 
by fostering competition for resources between 
methanogens and sulphate-reducing bacteria. Ali et 
al., (2012) and Malyan et al., (2016b) observed 15% 
- 21% reduction in total seasonal CH4 flux by AMS 
over urea. Applying phosphorus (P) and potassium 
(K) fertilizers reduces CH4 emissions from rice fields, 
likely by promoting plant aerenchyma development 
and stimulating methanotrophic bacteria. Although N 
fertilizer increases CH4 emissions, combining N, P, 
and K lowers the CH4-to-grain yield ratio significantly 
(Datta et al., 2013).  Additionally, Slameto et al., 
(2024) reported that combined application of NPKS 
fertilizer with manure fertilizer substantially increased 
rice yield while reduced CH4 emissions and GWP 
values compared to alternative fertilizer formulations. 
Long-term P fertilizer input reduces CH4 emissions in 
rice fields, mainly by improving CH4 oxidation (Zhu 
et al., 2022), which highlights the need for judicious P 
management to increase rice yield while reducing CH4 
emissions. Research by Kang et al., (2024) suggest 
that the application of silicate fertilizer containing 2.5 
% iron slag, particularly those enriched with electron 
acceptors such as oxidized iron (Fe3+), show promise 
in reducing CH4 emissions without compromising 
rice grain yield or soil characteristics. However, 
the dynamics of N2O were questionable. Since the 
reduced iron (Fe2+) can react as an electron donor, 
iron slag-based silicate fertilizer application might 
suppress N2O emissions by progressing N2O into N2 
gas during the denitrification process. In the Korean 



10  H  Journal of Rice Research 2025, Vol 18, No. 2

rice paddy, iron slag–based silicate fertilizer, enriched 
with Fe³⁺, suppressed seasonal CH4 emissions by 
36–38 % through competition for electrons under 
anaerobic conditions, while reduces seasonal N2O 
emissions by 49–56 % by donating electrons to drive 
denitrification toward N2O gas rather than N2O. It 
cuts net GWP by 37–40 %, and boosts grain yield by 
22–25 % at an optimal soil SiO2 level of ~183 mg/kg 
(Galgo et al., 2024).

Microbial processes involved in N2O production 
are typically related to the amount of N available 
in the soil, highlighting N fertilizer rate as the key 
determinant for N2O emissions. Meta-analyses by 
Linquist et al., (2012a) and Zheng et al., (2014) 
revealed that unlike CH4 emissions, which rise under 
low-to-moderate N levels but decline with excessive 
N, N2O emissions increase with higher nitrogen input. 
Notably, at optimal application rate of 150-200 kg N 
ha-1, yield benefits of nitrogen fertilization surpassed 
its GWP impact (Zheng et al., 2014). Zhong et al., 
(2016) reported the same trend with N₂O emissions 
and N-fertilizer rates, peaking at reproductive 
phase of rice growth, and suggested 225 kg N/ha as 
optimal. Regardless of N fertiliser type and biochar 
rates, increasing N rates increased rice yield and N2O 
emissions (Iboko et al., 2023). Thus, decreasing N 
input in rice soils is a promising strategy to mitigate 
GHG emissions, particularly N2O. This is because 
lower N inputs enhance competition between plants 
and soil microbes, leading to improved N assimilation 
by plants and hence reduced N2O emissions. However, 
applying less than the optimal amount can deplete 
SOC and reduce soil productivity. 

Enhanced efficiency nitrogen fertilizers (EENFs) 
such as polymer-coated slow or control release 
fertilizer (S/CRF) and common N-fertilizer combined 
with nitrification inhibitor (NI), urease inhibitor 
(UI), and double inhibitors of UI + NI (DI) are 
designed to optimize nitrogen use by crops, reducing 
environmental losses. EENFs reduce CH4 emissions 
by boosting oxidation and cut N2O emissions 
by limiting N availability for nitrification and 

denitrification processes (Qian et al., 2023). Compared 
to conventional N fertilizer, EENFs significantly 
reduced CH4 emission by 16.2% and increased rice 
yield by 7.3%, leading to a 21.7% decline in yield-
scaled N2O emissions (Yang et al., 2022). They further 
found that Nitrapyrin, DMPP (3, 4-dimethylpyrazole 
phosphate), and HQ (Hydroquinone) + Nitrapyrin were 
more effective in reducing CH4 emissions, while HQ 
alone had less impact on rice yield than other EENFs. 
According to Shakoor et al., (2018), N2O emissions 
peaked with conventional fertilizer applications, 
while optimized and slow-release fertilizers reduced 
emissions by up to 21% in rice-wheat cropping 
system. Kuchi et al., (2024) reported that coating 
urea with urease inhibitors conserves 20-25% N and 
ensures slow, gradual release throughout the crop 
growth, helping reduce pollution in soil, water, and the 
environment. Additionally, plant-derived materials 
such as neem cake, neem oil, and karanja seed extract 
are potential NIs (Gupta et al., 2021). Biological 
nitrification inhibitors (BNIs) enhance nitrogen 
utilisation efficiency, reduce leaching, lower N2O 
emissions and boost crop yields. Studies have proved 
that application of BNIs can decrease N2O emissions 
by up to 90% compared to non-BNI producing plants 
(Saud et al., 2022). Improved rice quality indices 
have also been observed, indicating that BNIs not 
only mitigate emissions but also enhance agricultural 
productivity, with 15.45% yield increase when BNIs 
are applied alongside conventional fertilizer (Huang 
et al., 2023). Compounds such as syringic acid 
derived from rice root exudates inhibit Nitrosomonas 
strains leading to improved nitrogen utilization, and 
significant reductions in N2O emissions by 69.1-
79.3% in paddy soils and by 40.8%-46.4% from red 
soil, respectively (Lu et al., 2022). They further found 
that the nitrification inhibitory efficacy of syringic 
acid was strongest in acidic red soil, followed by 
weakly acidic paddy soil, with no significant effect in 
an alkaline calcareous soil. Additionally, syringic acid 
addition possessed dual inhibition of both AOA and 
AOB abundance in paddy and red soil, linked to soil 
NH4

+ and dissolved organic carbon.
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Nano-fertilizer technology presents a viable approach 
to reduce agricultural emissions and mitigates climate 
change through controlled or slow-release of the 
nutrients (Saraiva et al., 2023; Srivastava et al., 2023). 
A greenhouse study by Mohanraj et al., (2017) showed 
that nano-zeolite fertilizers containing NO3⁻N and 
NH4⁺N facilitate prolonged nutrient release, extending 
availability up to 11.6 and 20 days, respectively. They 
further found that while NH4⁺based nano-fertilizer 
reduced N2O emissions, NO2⁻ based nano-fertilizers 
decreased CH4 emissions compared to conventional 
methods, showcasing enhanced nitrogen management 
and environmental benefit. Additionally, applying 
75 kg N/ha through urea along with three nano-urea 
foliar sprays at 20, 40 and 60 days after transplanting 
halved CH4 and N2O emissions compared to 150 kg 
N/ha through urea in conventional split application, 
while maintaining or boosting yields (Anushka  
et al., 2024). Moreover, Borah and Baruah (2016) 
assessed the impact of foliar application of plant 
growth hormones on CH4 emission reduction from 
rice paddies. The results indicated that treatments 
with indole-3-acetic acid and kinetin (in 20 mg L-1 

concentration) significantly decreased cumulative 
CH4 emissions while enhancing grain productivity, 
thus presenting a viable approach for both emission 
regulation and economic yield improvement in rice 
cultivation.

Nitrogen topdressing in irrigated Eastern India rice 
fields can be guided by LCC (≥5) and soil plant 
analysis development (SPAD) or chlorophyll meter 
(≥37) thresholds, saving 20–47.5 kg N/ha over fixed-
timing methods (Maiti et al., 2004). Split application 
synchronize nutrient supply with crop demand and 
minimizes N losses to the environment, but show 
inconsistent effects on N2O emissions over the course 
of a season depending on soil properties and water 
management (Slayden et al., 2022). Typically, N2O 
emissions spike shortly after fertilization due to 
heightened nitrification and denitrification (Gaihre 
et al., 2020; Gogoi and Baruah, 2014; Shakoor et 
al., 2018). Urea deep placement (UDP) significantly 

enhanced rice yield and nitrogen uptake by increasing 
panicle production per hill and improving nitrogen 
recovery efficiency (Gaihre et al., 2020), aligning with 
earlier findings that reported 15%–20% yield gains 
and 25%–50% urea savings compared to broadcast 
urea due to targeted nitrogen placement in the root 
zone (Huda et al., 2016; Islam et al., 2018). However, 
further investigations are needed before endorsing 
deeper placement as a sustainable method farming 
practice as indicated by (Rychel et al., 2020).

(C)	Other Agronomic management practices

1.	 Tillage management

Soil tillage practices exert a considerable influence 
on GHG emissions during rice cultivation, by 
altering both the physicochemical and biological 
characteristics of the soil, thereby enhancing microbial 
production of CH4 and N2O (Oorts et al., 2007). When 
considering GHGs collectively, soil tillage resulted in 
a 20 % increase in net global warming relative to NT, 
underscoring the CC mitigation potential inherent 
in a NT system. Conventional tillage practices, 
characterised by extensive soil disturbance, disrupts 
soil structure, leading to erosion, nutrient depletion, 
and reduced soil fertility over time. Contrastly, 
conservation tillage methods such as no-till (NT) and 
reduced tillage (RT) minimize soil disturbance, helping 
maintain structure, increase organic matter content, 
and improve moisture retention (Derpsch et al., 2010). 
These practices enhance drought resilience and soil 
health, while lowering GHG emissions and boosting 
carbon sequestration, thereby supporting climate 
mitigation and long-term agricultural sustainability 
(Lal, 2018). In comparison to CT systems, the adoption 
of NT or RT practices markedly diminished the total 
GWP (by 6.6 %) linked to CH4 and N2O emissions, 
with NT showing greater mitigation effectiveness 
under crop rotation, straw removal, specific nitrogen 
application rates, and land-use conditions; while RT’s 
impact varied widely, often increasing GHG emissions 
except in upland monoculture systems (Feng et al., 
2018). The consistent implementation of NT practices 
may enhance CH4 oxidation and, in turn, reduce CH4 



12  H  Journal of Rice Research 2025, Vol 18, No. 2

emissions. Omonode et al., (2007) articulated that 
NT practices limit CH4 oxidation by compacting soil, 
thus reducing CH4 uptake by rice soils. Moreover, 
research suggests that reducing tillage frequency in 
rice paddies could lead to diminished CH4 emissions, 
attributable to an increase in soil bulk density under 
NT methodologies, which subsequently reduces soil 
porosity and ultimately lowers the decomposition 
rate of organic matter (Ahmad et al., 2009; Pandey 
et al., 2012). However, some researchers contend that 
NT practices may intensify N2O emissions from rice 
soils (Zhang et al., 2011; Nyamadzawo et al., 2013). 
Bordoloi et al., (2019) reported that a 25% reduction 
in N fertilizer application rates significantly curbed 
N2O emissions from CT and RT agricultural systems. 
Given the potential for carbon sequestration and 
CH4 mitigation, NT practices possess the potential 
to counterbalance overall GHG emissions. NT 
cultivation emitted 16.5% less GHGs in terms of 
CO2-equivalent compared to conventional tillage 
practices (Yadav et al., 2020). The potential regulatory 
influence of RT on CH4 oxidation may facilitate the 
mitigation of CH4 emissions. The reduced GWP 
associated with NT or RT compared to CT practices 
in rice agricultural settings (Ahmad et al., 2009) 
suggests that the implementation of RT could confer 
significant benefits for GHG mitigation and carbon-
smart agricultural practices, warranting endorsement 
within rice-based cropping systems. Overall, 
NT or RT practices can mitigate GHG emissions 
and enhance carbon sequestration, although their 
effectiveness depends on specific tillage methods and 
other management practices (Feng et al., 2018).

2.	 Selection of suitable rice cultivars

The selection of rice varieties that enhance resource 
use efficiency while minimizing GHG emissions is 
essential for improving yields and addressing CC 
and associated abiotic stresses. There exists inherent 
variability in plant morphology, metabolic processes, 
and gas transport capabilities among distinct rice 
cultivars, with traits such as reduced number of sterile 
tillers, the number of plant tillers, above- and below-

ground biomass, root exudates and root aerenchyma, 
a shorter root system, smaller xylem vessels, 
an elevated rhizospheric oxidation potential, an 
optimized harvest index, and a reduced propensity for 
root excretion, in conjunction with timely maturation 
traits (Aulakh et al., 2000; Aulakh et al., 2001; Gupta 
et al., 2021; Bharali et al., 2017; Hussain et al., 2015; 
Linquist et al., 2018; Oo et al., 2016; Rajendran et al., 
2024; Wang and Adachi, 2000; Win et al., 2021) are 
optimally suited for the reduction of CH4 emissions 
from rice soils, highlighting the potential for selective 
breeding to enhance sustainability in rice cultivation 
amid GHG concerns (Bhattacharyya et al., 2012). A 
positive correlation between rice biomass and CH₄ 
flux has been documented (Khosa et al., 2010; Lee  
et al., 2023a; Su et al., 2015) , although outcomes from 
varietal comparisons have been inconsistent (Jiang  
et al., 2013; Qin et al., 2014). Moreover, a 
comprehensive meta-analysis by Zheng et al., (2014) 
demonstrated that while potentially having higher 
yields, indica cultivars display a markedly elevated 
GWP per unit of yield, measured at 1101.72 kg 
CO2 equivalent per Mg, in contrast to 711.38 kg 
CO2 equivalent per Mg for japonica cultivars. This 
disparity underscores the significance of considering 
rice races in alleviating GHG emissions in rice 
production systems. 

Studies indicate that CH4 emissions from various 
rice varieties can range significantly, with values 
reported between 157.05 to 470.73 kg ha–1 during 
the main season, while N2O emissions were notably 
lower, peaking at 0.94 kg ha–1 (Yadav et al., 2024). 
The fluctuations in these non-CO2 emissions may be 
contingent upon the physiological and anatomical 
attributes of various rice cultivars. Rice plants are 
vital for the production, oxidation, and emission of 
CH4, serving as the principal conduit for over 90% 
CH4 gas stemming from soil to atmosphere. Rice 
plays a dual role in CH4 dynamics viz., i) it enhances 
emissions through pathways like aerenchyma, and 
substrates (rhizodeposition, providing 40% to 60% of 
the organic C) for methanogens from the booting stage 
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onwards; ii) it suppresses emissions by facilitating 
oxygen pathways that inhibit methanogenesis or 
promote methanotrophy (Conrad, 2007; Yuan et al., 
2012).

Furthermore, the overall contribution of rice 
cultivation to global GHG emissions underscores the 
importance of adopting low-emission rice varieties 
and sustainable agricultural practices to balance food 
security with environmental sustainability (Chirinda  
et al., 2018; Chen et al., 2024; Yadav et al., 2024). 
Recent efforts to mitigate emissions include the 
promotion of submergence-tolerant varieties, drought-
tolerant aerobic rice, short-duration varieties, high-
yielding hybrids, and transgenic lines tailored for 
reduced methanogenic activity. Short duration varieties 
have demonstrated significantly low CH4 emissions 
and GWP while exhibited elevated cumulative N2O 
emissions (Win et al., 2021). Furthermore, high-
yielding and drought-resistant rice varieties can lower 
GHG emissions by 3.7% to 21.5% through optimized 
agronomic practices (Ji et al., 2024). Flood-tolerant 
rice like MTU 1184 may cut irrigation needs, and 
thereby may potentially influence CH4 emissions, 
and stabilize yields in flood-prone areas (Charumathi 
et al., 2024). Selecting varieties with physiological 
traits that correlate with lower CH4 emissions, such as 
smaller xylem vessels, further supports this mitigation 
strategy (Bharali et al., 2017). High-yielding short 
duration hybrids which can minimize the time fields 
remain flooded, are emerging as a transformative 
approach to reducing GHG emissions (Hosseiniyan 
Khatibi et al., 2025). Research shows that hybrid 
rice can emit 19% less CH4, often exhibit enhanced 
nitrogen-use efficiency, reducing nitrogen emissions 
associated with excessive fertilizer application, 
compared to traditional inbred varieties under similar 
conditions (IRRI, 2025). 

Research indicates that specific rice varieties exhibit 
significant differences in CH4 emissions due to their 
root microbiomes and genetic traits. For instance, 
low-methane emitting cultivars like CLXL745 have 
been shown to have reduced methanogenic activity 

compared to high-emitting varieties (Hu, 2023; 
Liechty et al., 2020). The effect of rice varieties on CH4 
emissions depends significantly on the colonization 
of methanogenic bacteria in roots as documented in 
Heijing 5 variety (Hu et al., 2023). Additionally, a 
70% reduction in CH4 emissions with sustained yields 
was achieved when Heijing 5 was hybridized with 
elite high-yielding varieties, due to improved carbon 
partitioning and enhanced sugar transporters that 
optimize above-ground carbon allocation and limited 
CH4-promoting root exudates (Hu et al., 2024). 

Notably, the cultivar Cliangyouhuazhan (CLYHZ) 
demonstrated high yield alongside the lowest GWP 
and GHGI in ratoon rice systems, making it a 
promising option for reducing CH4 emissions (Zhang 
et al., 2024). Genetically engineered rice varieties 
have shown significant potential in mitigating 
both CH4 and N2O emissions from paddy fields. 
For instance, transgenic lines with overexpressed 
nitrate transporters have demonstrated reductions 
in CH4 emissions by up to 60% and also reduced 
total cumulative N2O compared to their wild types, 
attributed to decreased root aerenchyma formation 
and lower methanogen populations in the rhizosphere 
(Iqbal et al., 2023). India has launched two genome-
edited rice varieties, ‘Kamala’ (DRR Dhan 100) 
and ‘Pusa DST Rice 1’, using Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR-
Cas) technology. These offer higher yields, climate 
resilience, and reduced environmental impact, 
marking a breakthrough in sustainable agriculture 
(GOI, 2025). Additionally, rice varieties engineered 
for enhanced root traits, such as gas-tight barriers, 
facilitate better oxygen diffusion, promoting CH4 
oxidation and nitrification, which further reduces GHG 
emissions (Jiménez and Pedersen, 2023). Breeding 
rice to channel more photosynthates to grains instead 
of roots can cut CH4 emissions and boost yields 
(Das and Kim, 2024). A genetically modified rice 
strain with increased starch content has been linked 
to lower methanogen levels, thereby contributing to 
reduced CH4 emissions (Bodelier, 2015).  The root 
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development of a particular rice variety may influence 
the sequestration of SOC within the soil matrix. 
Furthermore, this aspect affects microbial activity by 
providing the carbon sources requisite for the processes 
of nitrification and denitrification (Borah and Baruah, 
2016). Additionally, both qualitative and quantitative 
modifications in the profile of root exudates among 
various rice cultivars can significantly alter the rate of 
CH4 production (Jia et al., 2002). Varietal selection, 
along with irrigation management techniques such 
as AWD, can further mitigate CH4 emissions (Asch  
et al., 2023). According to Pramono et al., (2020), 
the low-emission cultivar Inpari 32 when paired with 
AWD techniques, achieved a 46% reduction in CH4 
emissions. 

3.	 Rice straw/residues management

Globally, the annual rice straw output ranges between 
800 and 1,000 million tonnes, with 600 to 800 million 
tonnes, primarily from Asia (IRRI, 2018). The straw-
to-paddy ratio varies significantly, ranging from 1.0 
to 4.3 (Nguyen et al., 2016; Zafar, 2015). Anaerobic 
decomposition of paddy straw and crop residue 
under CF conditions is a major contributor of CH4 

emissions from lowland rice fields (Liu et al., 2014). 
Consequently, managing rice straw emerges as a 
critical consideration in the effort to regulate GHG 
emissions associated with lowland rice cultivation. 
Moreover, the effective management of straw is 
integral to the functioning of global carbon cycles, 
particularly through the sequestration of soil organic 
carbon (SOC). 

Off-field practices such as composting, compost 
application, and bioenergy production offer greater 
mitigation potential than in-field practices. Proper 
straw management via surface retention/mulching 
or converting it into biochar or compost rather than 
burning or incorporation showed potential to curtail 
GHG discharges from rice soils (Bhattacharyya and 
Barman, 2018; Hussain et al., 2015). Composting 
can mitigate emissions associated with fresh straw, 
livestock manure, and fertilizers  (Gummert et al.,  

2020). Combining biochar and compost can further 
enhance mitigation (Allen et al., 2020), while avoiding 
straw burning, and adopting late incorporation can 
further reduce GHG potential. These methods have 
been shown to reduce net GWP by up to 206% 
compared to conventional practices (Belenguer-
Manzanedo et al., 2022). The development of 
alternative uses for rice straw can foster sustainable 
value chains, benefiting rural communities while 
addressing environmental concerns (Prateep Na 
Talang et al., 2024). 

In-field practices

a)	 Open-field burning – pile burning and spread 
burning

Rice straw burning is preferred over residue 
management due to several interrelated factors, 
including time constraints, short window for sowing 
of subsequent crops (Parihar et al., 2023; Zaidi et al., 
2021), lack of awareness about alternative residue 
management techniques (Kumar et al., 2023a; 
Muliarta et al., 2022; Sharma and Bhattu, 2015), and 
insufficient technological support. The high costs 
and limited access to alternative technologies further 
perpetuate this reliance on burning (Shyamsundar 
et al., 2019). Burning 1 kg of dry rice straw emits 
700-4100 mg CH4, 19-57 mg N2O, and about 7300 
kg CO2-equivalent per hectare (Bhattacharyya et al., 
2021). Studies suggest that the gross GHG emissions, 
excluding CO₂ as it is net neutral due to photosynthesis 
in the IPCC guidelines, from burning are up to 98% 
lower than those from fresh straw incorporation in 
flooded soils (Van Hung et al., 2020). When CO2 
is included, combustion causes 90% carbon loss, 
reducing soil carbon sequestration potential of fresh 
straw incorporation (Chen et al., 2019). When this 
is accounted for, the net GWP from burning aligns 
closely with that of complete fresh straw incorporation 
(Lu et al., 2010). Despite the established negative 
long-term impacts of straw incineration on soil 
quality, SOC sequestration and air quality, intensive 
rice farmers still prefer burning rice straw for its cost-
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effectiveness, reduced weed and disease carryover, 
and ease of tillage. Additionally, rice straw is less 
nutritious as fodder due to its silica content, making 
it less desirable for livestock feed. Thus, open-field 
burning remains the preferred method for farmers 
over residue management.

b)	 Incorporation

Studies indicate that while straw incorporation 
generally improves SOC levels, it can significantly 
elevate CH4 emissions, particularly when applied at 
inappropriate times or methods, especially before rice 
transplanting in spring, leading to a potential 120% rise 
in CH4 flux compared to no straw application (Song  
et al., 2019). Conversely, autumn incorporation with 
soil mixing can reduce CH4 emissions by 24-43% (Song 
et al., 2019). Furthermore, while long-term (5 years) 
straw incorporation tends to lower N2O emissions 
by up to 73.1% compared to one-year incorporation, 
it may also elevate CH4 emissions by over 100% 
particularly during tillering stage, necessitating 
careful management to balance productivity with 
environmental impacts (Huang et al., 2022). Effective 
strategies, such as controlled irrigation combined 
with multi-year straw incorporation, can optimize 
yields while minimizing GHG emissions (Huang  
et al., 2022). Therefore, the timing and method of straw 
incorporation are critical for achieving sustainable rice 
production and effective GHG management (Danso et 
al., 2023; Vijayaprabhakar et al., 2021). Nevertheless, 
the slow decomposition rate of rice straw due to high 
contents of recalcitrant components (12% Ca,  16% 
silica and 6%–7% lignin), low N content (< 1.0%), 
and high C/N ratio (Yadvinder-Singh et al., 2005) 
leads some farmers to forgo its soil incorporation, 
particularly in intensive cropping systems with a three-
week interlude. As a result, scientists have initiated 
research aimed at accelerating the decomposition of 
rice straw. Thailand promotes ploughing harvested 
paddy into soil with additives to speed up rice straw 
degradation. Yet, farmers hesitate due to the method’s 
time demands and expensive machinery (Oanh, 2021). 

Off-field practices

c)	 Composting

Straw composting with manure effectively mitigates 
CH4 emissions associated with in-field straw 
incorporation along with CH4 and N2O emissions from 
manure management. Rice yield remained stable with 
40-60% less chemical fertilizer when using rice straw 
manure (RSM). It also sustained soil silicon levels 
and boosted microbial activity and protein content 
compared to non-RSM soil (Man et al., 2007). Petersen 
et al., (2013) suggest that using aerated manure with 
straw can decrease CH4 emissions up to 90% compared 
to anaerobic storage.   Improper manure or compost 
application can lead to nearly total loss of manure N, 
impacting GHG emissions and fertilizer N supply. 
This often occurs when manure is applied to high pH, 
low CEC soils without incorporation. In such cases, 
composting manure with rice straw can significantly 
reduce emissions (Gummert et al., 2020).

Rice straw, with its high C:N ratio, is an effective 
manure compost bulking agent that reduces nitrogen 
loss to as little as 13% of the initial feedstock nitrogen 
by enhancing immobilization and substrate adsorption 
(Chadwick et al., 2011). Furthermore, Spaccini and 
Piccolo (2017) suggest that composting enhances the 
stabilized fraction of SOC and sequesters more carbon 
than in-field aerobic residue decomposition. The added 
step of producing mushrooms from straw compost 
may potentially lower N2O emissions by promoting 
nitrogen immobilization through mushroom nutrient 
uptake (Gummert et al., 2020). However, studies on 
composting show that adding biochar can cut total 
nitrogen losses by about 52% (Steiner et al., 2010).

d)	 Biochar production and utilization

Biochar can be prepared from rice straw under 
controlled pyrolysis (Foong et al., 2022). Biochar 
production stands out as the optimal approach 
for agricultural residue management, given the 
lowest GWP impact and the highest net cash flow 
(Prateep Na Talang et al., 2024). According to Sun 
et al., (2019), the application of rice straw-based 
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biochar was more effective in curbing overall NH3 
volatilization compared to the direct incorporation 
of rice straw. Crop residue decomposition, whether 
through incorporation or composting, may result 
in over 80% loss of the initial carbon as CO2, with 
rice residue reaching 32.8% oxidation (Sarma et al., 
2013). Biochar, by contrast, stabilizes straw carbon 
more effectively, retaining 40%-50% as long-term 
soil organic carbon, offering greater climate benefits 
(Bhattacharyya et al., 2021; Lehmann et al., 2006; 
Yin et al., 2014). Jia et al., (2025) recommends  
30 t ha−1 biochar to optimize crop production, enhance 
carbon balance, and mitigate climate change impacts, 
highlighting biochar’s potential as a sustainable soil 
amendment in arid ecosystems. Comprehensive meta-
analyses revealed high GHGs mitigation potential 
of biochar application (Allen et al., 2020) alongside 
up to 70% decrease in the overall carbon footprint 
associated with rice production (Mohammadi et al., 
2016). Liu et al., (2019b) observed a 41% reduction 
in GHG intensity (yield-scaled emissions) in upland 
soils and a 17% reduction in paddy soils with use of 
biochar in different cropping systems. Furthermore, 
co-application of low biochar (≤9 tons/ha) and medium 
N (>140 and ≤240 kg N/ha) produced low GHGs 
emissions, high grain yield, and the lowest GHGI 
(Iboko et al., 2023; Dong et al., 2024). According 
to Shen et al., (2024), incorporating biochar into 
tropical paddy soils can increase rice productivity 
and decrease N2O emissions by modifying the genes 
linked to nitrogen metabolism.

Microbiota management 

Soil microbial dynamics influence emissions 
of CO2, N2O and CH4 from rice soils. In soil, 
plant root/rhizospheric respiration and microbial 
respiration significantly contribute to elevated CO2 
concentrations in soil air compared to atmospheric 
levels. Research highlights that probiotic modulation 
can lead to significant GHG emission reductions, with 
a particular study noting a 47.58% decrease in CO2, 
21.53% in CH4, and 88.50% in N2O emissions, while 
increasing rice yield by 27.75% (Pao et al., 2025). 

Additionally, N-fixing and CH4-oxidizing bacteria 
contribute to GHG mitigation by utilizing CH4 as an 
energy source and reducing N2O emissions, fostering 
sustainable agricultural practices (Minamisawa, 
2022). Cable bacteria boost sulphate via electrogenic 
sulphide oxidation, suppressing methanogens and 
cutting rice soil CH4 emissions by 93% after one-time 
inoculation of rice-vegetated soil (Scholz et al., 2020). 
Inoculating rice seeds with Betaproteobacterium 
Azoarcus sp. KH32C bacteria reduced soil CH4-
producing microbes, cutting CH₄ emissions by 17.2% 
(no fertilizer) and 23.5% (with nitrogen fertilizer), 
while maintaining rice grain yield (Sakoda et al., 
2022). Furthermore, the integration of microbial bio-
stimulants has also proven effective in enhancing 
grain yields and decreasing CH4 emissions, which 
is crucial given that rice accounts for approximately 
11% of global anthropogenic CH4 emissions (Kumar 
et al., 2024).

The use of man-made (i.e., silicone tube‑based) 
aerenchymatous tissues (MAT) has been demonstrated 
to enhance soil oxygenation, resulting significant 
abatement in CH4 emissions by about 50% in various 
both in mesocosms and paddy field trials (Yuan et al., 
2023). Moreover, they showed that the performance 
of MAT can be further improved by simply increasing 
the air pressure in MAT (e.g., ‑74.2% CH4 emission 
at 200 kPa air pressure). Studies demonstrate that 
Plant Microbial Fuel Cells (PMFCs) can lower CH4 
emissions by up to 57% compared to conventional rice 
cultivation, especially when integrated with biochar 
and other enhancements (Al Hussain et al., 2024; 
Kumar et al., 2023b). The competition for organic 
substrates between electrogens and methanogens 
in PMFCs further enhances this reduction (Arends  
et al., 2014; Deng et al., 2016), with notable studies 
reporting reductions ranging from 38% to 84% 
through advanced fertilization techniques (Al Hussain 
et al., 2024). 

Challenges in GHG mitigation from rice fields  

The expected rise in both the global population and 
rice consumption has sparked major concerns about 
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limiting GHG emissions to mitigate future global 
climate change. The challenge lies in producing more 
food using less land and fewer resources. Significant 
advancements in agricultural technology will be 
required, including the development of high yielding, 
stress tolerant, low emission rice varieties. Water and 
fertilizers are the major drivers of GHG emissions 
from rice fields, primarily CH4 and N2O. Research 
indicates that integrating AWD practices can lower 
CH4 emissions, but widespread adoption remains 
a challenge due to varying farmer incentives and 
local conditions. Additionally, the variability in soil 
types and climatic conditions across different regions 
complicates the implementation of uniform mitigation 
strategies. Furthermore, a trade-off between CH4 and 
N2O emissions is established; while AWD effectively 
curtails CH4, it raises concerns about increased N2O 
emissions, necessitating careful management. The 
DSR, SRI, and aerobic rice production systems 
effectively mitigates GHG emissions. However, 
despite its potential benefits, the adoption of such 
methods has been limited due to several constraints, 
including lack of awareness among farmers, significant 
changes in crop management practices compared to 
traditional practices such as nutrient management, 
weed management, etc. 

While various mitigation strategies have shown promise 
in reducing GHG emissions from rice fields, several 
challenges remain, including balancing emissions 
reduction with yield maintenance, addressing the 
trade-off between CH4 and N2O emissions, adapting 
mitigation strategies to diverse agroecological 
conditions, incentivizing farmer adoption of emission-
reducing practices, and improving understanding of 
soil-plant-microbe interactions in GHG production 
and emission. 

However, balancing GHG reduction with food 
security remains complex, as some mitigation efforts 
may inadvertently impact crop yields and food 
availability (Creason et al., 2016). Thus, integrated 
approaches that combine effective water management, 
appropriate fertilization, and cultivar selection are 

essential for sustainable rice production and effective 
GHG reduction (Sander, 2017). Future research 
should focus on developing rice varieties with lower 
GHGE potential, improving models to predict GHG 
emissions under various management scenarios, 
exploring the potential of microbial interventions to 
reduce GHG production, investigating the long-term 
impacts of mitigation strategies on soil health and 
productivity, and assessing the economic feasibility of 
various mitigation options. Furthermore, rice farmers 
are unlikely to adopt a practice unless it offers higher 
net returns. Moreover, socio-economic factors, such 
as access to technology and financial resources, play 
a crucial role in the adoption of sustainable practices, 
highlighting the importance of targeted policies and 
support systems to facilitate change. Addressing 
these challenges require coordinated effort among 
researchers, policymakers, and farmers to develop 
and implement effective mitigation strategies.

Conclusion 
Rice production system and its cultivation significantly 
contribute towards GHG (CH4 and N2O) releases and 
lead to global warming. Reducing GHG emissions 
from paddy fields is very important to stabilize 
atmospheric concentration of the GHGs, which can 
contribute significantly to mitigate global warming. 
Achieving the Paris Agreement’s goal of restricting 
global warming to below 2°C calls for special focus 
on the rice sector. Increasing population and escalating 
rice demand in the future raise serious concerns to 
curtail GHG emissions from rice cultivation without 
compromising the yield. By understanding the 
production mechanisms of CH4 and N2O from paddy 
fields, proper management practices with prime focus 
on water and fertilizer may play a significant role in 
mitigating the anthropogenic GHGE from agricultural 
soil. Crop management practices such as AWD, DSR, 
SRI, aerobic rice, conservation tillage, addition of 
compost, integrated biological-chemical nutrient 
management, efficient crop residue management 
along with climate resilient varietal selection can 
mitigate GHG emissions without any yield penalty. 
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